aboutsummaryrefslogtreecommitdiff
path: root/inst/stan/colext.stan
blob: 8d599dacc3dc759952e0ee1d14fddcc89f8f99e9 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
functions{

#include /include/functions_priors.stan

//can shortcut here I think
vector get_pY(int[] y, vector logit_p, int nd){
  vector[2] out;
  out[1] = nd;
  out[2] = exp(bernoulli_logit_lpmf(y | logit_p));
  return out;
}

matrix phi_matrix(row_vector phi_raw){
  return to_matrix(phi_raw, 2, 2, 0);
}

//delta-step transition prob matrix via Chapman-Kolmogorov equation
matrix get_phi(matrix phi_raw, int Tstart, int Tnext){
  matrix[2,2] phi = diag_matrix(rep_vector(1, 2));
  int delta = Tnext - Tstart;
  if(delta == 1){
    return phi_matrix(phi_raw[Tstart,]);
  }

  for (d in 1:delta){
    phi = phi * phi_matrix(phi_raw[(Tstart + d - 1),]);
  }
  return phi;
}

//Ts = indices of primary periods when site was sampled (eg not all NA)
real lp_colext(int[] y, int[] Tsamp, int[] J, row_vector psi, matrix phi_raw,
               vector logit_p, int[] nd){

  int T = size(Tsamp);
  matrix[2,2] phi_prod = diag_matrix(rep_vector(1, 2));
  matrix[2,2] phi;
  vector[2] Dpt;
  int idx = 1;
  int end;

  if(T > 1){
    for (t in 1:(T-1)){
      phi = get_phi(phi_raw, Tsamp[t], Tsamp[t+1]);
      end = idx + J[Tsamp[t]] - 1;
      Dpt = get_pY(y[idx:end], logit_p[idx:end], nd[Tsamp[t]]);
      phi_prod *= diag_pre_multiply(Dpt, phi);
      idx += J[Tsamp[t]];
    }
  }

  end = idx + J[Tsamp[T]] - 1;
  Dpt = get_pY(y[idx:end], logit_p[idx:end], nd[Tsamp[T]]);

  return log(dot_product(psi * phi_prod, Dpt));
}

//needs fixed
vector get_loglik_colext(int[] y, int M, int[] Tsamp, int[,] J, int[,] si,
                         matrix psi_raw, matrix phi_raw, vector logit_p,
                         int[,] nd){
  vector[M] out;
  for (i in 1:M){
    out[i] = lp_colext(y[si[i,1]:si[i,2]], Tsamp[si[i,3]:si[i,4]], J[i,],
                       psi_raw[i,], phi_raw[si[i,5]:si[i,6],],
                       logit_p[si[i,1]:si[i,2]], nd[i,]);
  }
  return out;
}

}

data{

#include /include/data.stan

int has_random_col;
int has_random_ext;
int n_obs_col;
int n_obs_ext;
int n_fixed_col;
int n_fixed_ext;
int n_group_vars_col;
int n_group_vars_ext;
int n_random_col[has_random_col ? n_group_vars_col : 1];
int n_random_ext[has_random_ext ? n_group_vars_ext: 1];
matrix[M*(T-1), n_fixed_col] X_col;
matrix[M*(T-1), n_fixed_ext] X_ext;
vector[M*(T-1)] offset_col;
vector[M*(T-1)] offset_ext;

int Zdim_col[5];
vector[Zdim_col[3]] Zw_col;
int Zv_col[Zdim_col[4]];
int Zu_col[Zdim_col[5]];

int Zdim_ext[5];
vector[Zdim_ext[3]] Zw_ext;
int Zv_ext[Zdim_ext[4]];
int Zu_ext[Zdim_ext[5]];

int prior_dist_col[3];
int prior_dist_ext[3];
matrix[3, (n_fixed_col+1)] prior_pars_col;
matrix[3, (n_fixed_ext+1)] prior_pars_ext;
}

transformed data{

int no_detects[M, T];
int include_scale;
int include_shape;

for (m in 1:M){
  for (t in 1:T){
    no_detects[m, t] = 1 - Kmin[m, t];
  }
}

include_scale = 0;
include_shape = 0;
}

parameters{

#include /include/params_single_season.stan

vector[n_fixed_col] beta_col;
vector[n_fixed_ext] beta_ext;
vector<lower=0>[n_group_vars_col] sigma_col;
vector<lower=0>[n_group_vars_ext] sigma_ext;
vector[sum(n_random_col)] b_col;
vector[sum(n_random_ext)] b_ext;

}

transformed parameters{

vector[M] logit_psi;
matrix[M,2] psi_raw;
vector[M*(T-1)] logit_col;
vector[M*(T-1)] logit_ext;
matrix[M*(T-1), 4] phi_raw;
vector[R] logit_p;
vector[M] log_lik;

//psi
logit_psi = X_state * beta_state + offset_state;
if(has_random_state){
  logit_psi = logit_psi +
              csr_matrix_times_vector(Zdim_state[1], Zdim_state[2], Zw_state,
                                      Zv_state, Zu_state, b_state);
}

for (i in 1:M){
  psi_raw[i,2] = inv_logit(logit_psi[i]);
  psi_raw[i,1] = 1 - psi_raw[i,2];
}

//phi
logit_col = X_col * beta_col + offset_col;
if(has_random_col){
  logit_col = logit_col +
              csr_matrix_times_vector(Zdim_col[1], Zdim_col[2], Zw_col,
                                      Zv_col, Zu_col, b_col);
}

logit_ext = X_ext * beta_ext + offset_ext;
if(has_random_ext){
  logit_ext = logit_ext +
              csr_matrix_times_vector(Zdim_ext[1], Zdim_ext[2], Zw_ext,
                                      Zv_ext, Zu_ext, b_ext);
}

for (i in 1:(M*(T-1))){
  phi_raw[i,2] = inv_logit(logit_col[i]);
  phi_raw[i,1] = 1 - phi_raw[i,2];
  phi_raw[i,3] = inv_logit(logit_ext[i]);
  phi_raw[i,4] = 1 - phi_raw[i,3];
}

//det
logit_p = X_det * beta_det + offset_det;
if(has_random_det){
  logit_p = logit_p +
            csr_matrix_times_vector(Zdim_det[1], Zdim_det[2], Zw_det,
                                    Zv_det, Zu_det, b_det);
}

log_lik = get_loglik_colext(y, M, Tsamp, J, si, psi_raw, phi_raw,
                            logit_p, no_detects);

}

model{

#include /include/priors_single_season.stan

target += lp_priors(beta_col, prior_dist_col, prior_pars_col);
target += lp_priors(beta_ext, prior_dist_ext, prior_pars_ext);

target += lp_random_prior(has_random_col, n_group_vars_col, b_col,
                          n_random_col, sigma_col, prior_dist_col[3],
                          prior_pars_col);
target += lp_random_prior(has_random_ext, n_group_vars_ext, b_ext,
                          n_random_ext, sigma_ext, prior_dist_ext[3],
                          prior_pars_ext);

target += sum(log_lik);

}