aboutsummaryrefslogtreecommitdiff
path: root/man/occuCOP.Rd
blob: 7549ca38f19bc72f8c204e98b68df4bb8196b413 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
\name{occuCOP}

\alias{occuCOP}

\encoding{UTF-8}

\title{Fit the occupancy model using count dta}

\usage{
occuCOP(data, 
        psiformula = ~1, lambdaformula = ~1, 
        psistarts, lambdastarts, starts,
        method = "BFGS", se = TRUE, 
        engine = c("C", "R"), na.rm = TRUE, 
        return.negloglik = NULL, L1 = FALSE, ...)}

\arguments{

    \item{data}{An \code{\link{unmarkedFrameOccuCOP}} object created with the \code{\link{unmarkedFrameOccuCOP}} function.}
    
    \item{psiformula}{Formula describing the occupancy covariates.}
    
    \item{lambdaformula}{Formula describing the detection covariates.}
    
    \item{psistarts}{Vector of starting values for likelihood maximisation with \code{\link{optim}} for occupancy probability \eqn{\psi}{psi}. These values must be logit-transformed (with \code{\link{qlogis}}) (see details). By default, optimisation will start at 0, corresponding to an occupancy probability of 0.5 (\code{plogis(0)} is 0.5).}
    
    \item{lambdastarts}{Vector of starting values for likelihood maximisation with \code{\link{optim}} for detection rate \eqn{\lambda}{lambda}. These values must be log-transformed (with \code{\link{log}}) (see details). By default, optimisation will start at 0, corresponding to detection rate of 1 (\code{exp(0)} is 1).}
    
    \item{starts}{Vector of starting values for likelihood maximisation with \code{\link{optim}}. If \code{psistarts} and \code{lambdastarts} are provided, \code{starts = c(psistarts, lambdastarts)}.}

    \item{method}{Optimisation method used by \code{\link{optim}}.}
    
    \item{se}{Logical specifying whether to compute (\code{se=TRUE}) standard errors or not (\code{se=FALSE}).}
    
    \item{engine}{Code to use for optimisation. Either \code{"C"} for fast C++ code, or \code{"R"} for native R code.}
    
    \item{na.rm}{Logical specifying whether to fit the model (\code{na.rm=TRUE}) or not (\code{na.rm=FALSE}) if there are NAs in the \code{\link{unmarkedFrameOccuCOP}} object.}
    
    \item{return.negloglik}{A list of vectors of parameters (\code{c(psiparams, lambdaparams)}). If specified, the function will not maximise likelihood but return the negative log-likelihood for the those parameters in the \code{nll} column of a dataframe. See an example below.}

    \item{L1}{Logical specifying whether the length of observations (\code{L}) are purposefully set to 1 (\code{L1=TRUE}) or not (\code{L1=FALSE}).}

    \item{\dots}{Additional arguments to pass to \code{\link{optim}}, such as lower and upper bounds or a list of control parameters.}
  }

\description{This function fits a single season occupancy model using count data.}

\details{
  
  See \code{\link{unmarkedFrameOccuCOP}} for a description of how to supply data to the \code{data} argument. See \code{\link{unmarkedFrame}} for a more general documentation of \code{unmarkedFrame} objects for the different models implemented in \pkg{unmarked}.
  
  \subsection{The COP occupancy model}{
    
    \code{occuCOP} fits a single season occupancy model using count data, as described in Pautrel et al. (2023). 

    The \strong{occupancy sub-model} is:
    
    \deqn{z_i \sim \text{Bernoulli}(\psi_i)}{z_i ~ Bernoulli(psi_i)}
    
    \itemize{
      \item With \eqn{z_i}{z_i} the occupany state of site \eqn{i}{i}. \eqn{z_i=1}{z_i = 1} if site \eqn{i}{i} is occupied by the species, \emph{i.e.} if the species is present in site \eqn{i}{i}. \eqn{z_i=0}{z_i = 0} if site \eqn{i}{i} is not occupied.
      \item With \eqn{\psi_i}{psi_i} the occupancy probability of site \eqn{i}{i}.
    }
    
    The \strong{observation sub-model} is:
    
    \deqn{
      N_{ij} | z_i = 1 \sim \text{Poisson}(\lambda_{ij} L_{ij}) \\
      N_{ij} | z_i = 0 \sim 0
    }{
      N_ij | z_i = 1 ~ Poisson(lambda_is*L_is)
      N_ij | z_i = 0 ~ 0
    }
    
    \itemize{
      \item With \eqn{N_{ij}}{N_ij} the count of detection events in site \eqn{i}{i} during observation \eqn{j}{j}.
      \item With \eqn{\lambda_{ij}}{lambda_ij} the detection rate in site \eqn{i}{i} during observation \eqn{j}{j} (\emph{for example, 1 detection per day.}).
      \item With \eqn{L_{ij}}{L_ij} the length of observation \eqn{j}{j} in site \eqn{i}{i} (\emph{for example, 7 days.}).
    }
    
    What we call "observation" (\eqn{j}{j}) here can be a sampling occasion, a transect, a discretised session. Consequently, the unit of \eqn{\lambda_{ij}}{lambda_ij} and \eqn{L_{ij}}{L_ij} can be either a time-unit (day, hour, ...) or a space-unit (kilometer, meter, ...).
  }
  
  \subsection{The transformation of parameters \eqn{\psi} and \eqn{\lambda}}{
    In order to perform unconstrained optimisation, parameters are transformed.
    
    The occupancy probability (\eqn{\psi}) is transformed with the logit function (\code{psi_transformed = qlogis(psi)}). It can be back-transformed with the "inverse logit" function (\code{psi = plogis(psi_transformed)}).

    The detection rate (\eqn{\lambda}) is transformed with the log function (\code{lambda_transformed = log(lambda)}). It can be back-transformed with the exponential function (\code{lambda = exp(lambda_transformed)}).
  }
  
}

\value{\code{unmarkedFitOccuCOP} object describing the model fit. See the \code{\linkS4class{unmarkedFit}} classes.}

\references{

Pautrel, L., Moulherat, S., Gimenez, O. & Etienne, M.-P. Submitted. \emph{Analysing biodiversity observation data collected in continuous time: Should we use discrete or continuous-time occupancy models?} Preprint at \doi{10.1101/2023.11.17.567350}.

}

\author{Léa Pautrel}

\seealso{
  \code{\link{unmarked}}, 
  \code{\link{unmarkedFrameOccuCOP}},
  \code{\link{unmarkedFit-class}}
}


\examples{
set.seed(123)
options(max.print = 50)

# We simulate data in 100 sites with 3 observations of 7 days per site.
nSites <- 100
nObs <- 3

# For an occupancy covariate, we associate each site to a land-use category.
landuse <- sample(factor(c("Forest", "Grassland", "City"), ordered = TRUE), 
                  size = nSites, replace = TRUE)
simul_psi <- ifelse(landuse == "Forest", 0.8, 
                    ifelse(landuse == "Grassland", 0.4, 0.1))
z <- rbinom(n = nSites, size = 1, prob = simul_psi)

# For a detection covariate, we create a fake wind variable.
wind <- matrix(rexp(n = nSites * nObs), nrow = nSites, ncol = nObs)
simul_lambda <- wind / 5
L = matrix(7, nrow = nSites, ncol = nObs)

# We now simulate count detection data
y <- matrix(rpois(n = nSites * nObs, lambda = simul_lambda * L), 
            nrow = nSites, ncol = nObs) * z

# We create our unmarkedFrameOccuCOP object
umf <- unmarkedFrameOccuCOP(
  y = y,
  L = L,
  siteCovs = data.frame("landuse" = landuse),
  obsCovs = list("wind" = wind)
)
print(umf)

# We fit our model without covariates
fitNull <- occuCOP(data = umf)
print(fitNull)

# We fit our model with covariates
fitCov <- occuCOP(data = umf, psiformula = ~ landuse, lambdaformula = ~ wind)
print(fitCov)

# We back-transform the parameter's estimates
## Back-transformed occupancy probability with no covariates
backTransform(fitNull, "psi")

## Back-transformed occupancy probability depending on habitat use
predict(fitCov,
        "psi",
        newdata = data.frame("landuse" = c("Forest", "Grassland", "City")),
        appendData = TRUE)

## Back-transformed detection rate with no covariates
backTransform(fitNull, "lambda")

## Back-transformed detection rate depending on wind
predict(fitCov,
        "lambda",
        appendData = TRUE)

## This is not easily readable. We can show the results in a clearer way, by:
##  - adding the site and observation
##  - printing only the wind covariate used to get the predicted lambda
cbind(
  data.frame(
    "site" = rep(1:nSites, each = nObs),
    "observation" = rep(1:nObs, times = nSites),
    "wind" = getData(fitCov)@obsCovs
  ),
  predict(fitCov, "lambda", appendData = FALSE)
)

# We can choose the initial parameters when fitting our model.
# For psi, intituively, the initial value can be the proportion of sites 
#          in which we have observations.
(psi_init <- mean(rowSums(y) > 0))

# For lambda, the initial value can be the mean count of detection events 
#             in sites in which there was at least one observation.
(lambda_init <- mean(y[rowSums(y) > 0, ]))

# We have to transform them.
occuCOP(
  data = umf,
  psiformula = ~ 1,
  lambdaformula = ~ 1,
  psistarts = qlogis(psi_init),
  lambdastarts = log(lambda_init)
)

# If we have covariates, we need to have the right length for the start vectors.
# psi ~ landuse --> 3 param to estimate: Intercept, landuseForest, landuseGrassland
# lambda ~ wind --> 2 param to estimate: Intercept, wind
occuCOP(
  data = umf,
  psiformula = ~ landuse,
  lambdaformula = ~ wind,
  psistarts = rep(qlogis(psi_init), 3),
  lambdastarts = rep(log(lambda_init), 2)
)

# And with covariates, we could have chosen better initial values, such as the
# proportion of sites in which we have observations per land-use category.
(psi_init_covs <- c(
  "City" = mean(rowSums(y[landuse == "City", ]) > 0),
  "Forest" = mean(rowSums(y[landuse == "Forest", ]) > 0),
  "Grassland" = mean(rowSums(y[landuse == "Grassland", ]) > 0)
))
occuCOP(
  data = umf,
  psiformula = ~ landuse,
  lambdaformula = ~ wind,
  psistarts = qlogis(psi_init_covs))

# We can fit our model with a different optimisation algorithm.
occuCOP(data = umf, method = "Nelder-Mead")

# We can run our model with a C++ or with a R likelihood function.
## They give the same result. 
occuCOP(data = umf, engine = "C", psistarts = 0, lambdastarts = 0)
occuCOP(data = umf, engine = "R", psistarts = 0, lambdastarts = 0)

## The C++ (the default) is faster.
system.time(occuCOP(data = umf, engine = "C", psistarts = 0, lambdastarts = 0))
system.time(occuCOP(data = umf, engine = "R", psistarts = 0, lambdastarts = 0))

## However, if you want to understand how the likelihood is calculated,
## you can easily access the R likelihood function.
print(occuCOP(data = umf, engine = "R", psistarts = 0, lambdastarts = 0)@nllFun)

# Finally, if you do not want to fit your model but only get the likelihood,
# you can get the negative log-likelihood for a given set of parameters.
occuCOP(data = umf, return.negloglik = list(
  c("psi" = qlogis(0.25), "lambda" = log(2)),
  c("psi" = qlogis(0.5), "lambda" = log(1)),
  c("psi" = qlogis(0.75), "lambda" = log(0.5))
))
}

\keyword{models}