
1

Bonus Chapter 19B of
Applied Statistical Modeling

for Ecologists (ASM)
Your gentle introduction and quick-start guide to:

 the Bayesian approach to statistical modeling

 the essentials of applied statistical modeling: linear, generalized linear and
mixed models

 the latest, cutting-edge statistical software JAGS, NIMBLE, Stan and TMB

 maximum likelihood estimation for all the above models in practice

Marc Kéry & Ken Kellner,
Swiss Ornithological Institute & MSU

6 July 2024

This is a bonus chapter of the Applied Statistical Modeling (ASM) book by Kéry & Kellner (Elsevier,
2024). It does not appear in the printed book, but is available on the book website at
https://www.elsevier.com/books-and-journals/book-companion/9780443137150. Parts of the
content draw from chapter 21 in the little blue bugs book (Kéry, 2010).

https://www.elsevier.com/books-and-journals/book-companion/9780443137150

2

Table of Contents

19B Binomial N-mixture models ..3
19B.1 Introduction ... 3
19B.2 Data generation ... 6
19B.3 A detection-naïve analysis of the maximum count per site .. 13
19B.4 Likelihood analysis with canned functions in the R package unmarked 16

19B.4.1 Fitting the model to the simulated bullfinch data set .. 16
19B.4.2 Spatial prediction of expected abundance ... 21
19B.4.3 Computing SEs for a derived quantity using the delta method and the bootstrap 24

19B.5 Bayesian analysis with JAGS .. 27
19B.6 Bayesian analysis with NIMBLE ... 39
19B.7 Bayesian analysis with Stan ... 40

19B.8 Bayesian analysis with canned functions in the R package ubms 45
19B.9 Do-it-yourself maximum likelihood estimates .. 47
19B.10 Likelihood analysis with TMB .. 49
19B.11 Comparison of the estimates .. 52
19B.12 Summary and outlook ... 52
References ... 55

3

19B Binomial N-mixture models

Key topics: abundance, delta method, density, detection/nondetection data, detection
probability, discrete random effects, false negative observation error, integrated likelihood,
marginal likelihood, measurement error, observation error, observation process, package
unmarked, package ubms, parametric bootstrap, repeated-measures design, species
distribution model (SDM)

19B.1 Introduction

Ecology has been defined as the study of distribution and abundance (Andrewartha & Birch 1954;
Krebs 2009). However, in nature neither of them can usually be observed without error, and
statistical methods need to be applied to infer the true states of distribution and abundance from
error-prone observations. In Chapter 19 we met a repeated-measures protocol where detection
or nondetection of a species was assessed across M sites and T temporal replicates. This design
enabled the application of an occupancy model to estimate the true species distribution, as
represented by occupancy probability, free of the distorting effects of imperfect detection.
Temporal replicate observations in a closed system allowed us to resolve the confounding
between occupancy and detection. The occupancy model is a hierarchical model that is in a sense
similar to a binomial GLMM (Chapter 17) but has binary random effects that do not appear in the
linear predictor in an additive fashion. Most of all, in contrast to a GLMM, these random effects
have a clear biological meaning: they denote the presence or absence of the species at each site.

This chapter showcases another hierarchical model with a non-standard random effects
distribution, namely Poisson. As in the occupancy model, the random effects in this model also
have a precise biological meaning, which now is local population size (Royle & Dorazio, 2008).
Thus, with this model we can estimate abundance corrected for imperfect detection based on
temporally and spatially replicated counts, rather than detection/nondetection data as in the
occupancy model.

The ecological motivation in this chapter is the modeling of the abundance of a songbird
species, the bullfinch (Fig. 19.1), along an elevational gradient in Switzerland. One of our aims is to
identify the optimum elevation of that species, at which its expected abundance is greatest. This
may be a useful single-number characterization of the species distribution in the context of
climate change studies, where we might for instance be interested in whether the optimum
elevation moves up over time.

We will model replicated counts from the Swiss breeding bird survey MHB ("Monitoring
Häufige Brutvögel"; Schmid et al. 2004), where a total of 267 1 km2 sample quadrats are laid out
in an approximate grid across the country. Since 1999, each quadrat has been surveyed
repeatedly in every breeding season (mid-April to mid-July) along a wiggly transect. This transect
aims to cover as much area of the quadrat as possible. It averages about 4–6 km in length and for
each quadrat remains identical across all years. During each survey, a territory-mapping protocol
(Bibby et al. 2000) for measuring abundance is applied, in which an observer records on a map
every bird individual detected by sight or ear. Three such repeated measurements of abundance
are taken in each quadrat per year, except in quadrats at greater than 2000 m elevation, where
only two surveys are conducted per season. Within a given quadrat, subsequent surveys within
the same breeding season are typically conducted about two weeks apart. This short duration
justifies the closure assumption for many of the surveyed species, including the bullfinch. For

4

more information about territory mapping and the Swiss MHB, see Kéry et al. (2005) and Sections
6.9 and 7.9 in Kéry & Royle (2016).

The typical question in biodiversity monitoring programs is always: "Are things getting
better or worse?", or, in other words, whether there a trend over time in a biological quantity
such as abundance or the number of occupied sites. The usual type of analysis to answer this
question for counts is typically a Poisson GLM or GLMM, and examples include Link & Sauer
(2002), Ver Hoef & Jansen (2007), Barker et al. (2016), Strebel et al. (2020).

Fig. 19B–1: A glorious male bullfinch (Pyrrhula pyrrhula, photo by Markus Varesvuo).

When repeated counts are available, a common practice is to only retain and analyze the

maximum count, although this in fact throws out valuable information. In this chapter, we
showcase a model that makes full use of replicated counts: the binomial N-mixture model of Royle
(2004a). This model yields estimates of true abundance that are corrected for imperfect
detection; see also Wyatt (2002), Dodd & Dorazio (2004), Royle (2004b), Kéry et al. (2005), Royle
et al. (2005), Dorazio (2007), Kéry (2008), Wenger & Freeman (2008), Knaus et al. (2018), Madsen
& Royle (2023). For simplicity, we will simulate data from a single breeding season and assume
population closure. Variants of the N-mixture model exist for multi-year data, and they enable
direct estimation of population trends in abundance (Royle & Dorazio, 2008, p. 4–7; Kéry et al.
2009; Kéry & Royle 2010; Dail & Madsen, 2011). For recent monographs on various static and
dynamic types of N-mixture models, see chapters 6–8 in Kéry & Royle (2016) and chapters 1 and 2
in Kéry & Royle (2021).

We use the term 'site' to denote the spatial sampling units, which in our example are 1
km2 quadrats. Other examples of sites include point counts or transects, or more naturally defined
spatial units such as ponds, nature reserves, small woodlots, or backyards. The N-mixture model
may be applicable to the resulting data which are replicated in space (i.e., over sites) and in time

5

(i.e., over repeated measurements), provided sites are well-defined and population size at each
site is constant over the study duration for which closure is assumed.

So, let's now have a look at the static N-mixture model for repeated abundance
measurements (also called surveys, or occasions). We’ll show the model for a set of closed
populations (i.e., at each site) in a single year, matching the structure of a single year of MHB data.

We assume that bird count ,i ty at site i made during survey t comes from a two-stage stochastic

process. The first stochastic process is the biological process that distributes the animals in space,
i.e., among sites. This process generates the site-specific abundance that we would like to model
directly, but cannot, because we will arguably never see all individual animals or plants in a field
survey. The typical statistical model for such abundance data is the Poisson distribution, which is
governed by the intensity, or density, parameter , which in turn is typically expressed
conditional on habitat covariates. The result of this first stochastic process is the local, site-specific

abundance iN .

The second stochastic process is an observation process, which is expressed conditional

on, or given, the true state iN of a site. The observation process together with iN determines the

data actually observed, i.e., the counts ,i ty . In the absence of any double counts, a natural model

for the observation process in the presence of imperfect detection is the binomial distribution.

Thus, we assume that given that there are iN bullfinches present at site i and that each has a

probability of ,i tp to be detected at site i during replicate survey t , the number of finches

actually observed during a survey is binomially distributed. Two important consequences are that

(1) we cannot observe more than iN finches and typically observe fewer than iN and (2) counts

,i ty will vary from survey to survey even under identical conditions (Kéry & Schmidt, 2008). Note

that we won't be able to estimate a separate value of detection p at every site and survey.

Hence, we will have to constrain ,i tp by making it constant over the spatial or temporal

dimensions or by adopting linear models with covariates; see below.
Four important assumptions of the N-mixture model are:

 population closure,

 independent and identical detection probability for all individuals at site i and during
survey t ,

 the absence of any double counts and other sources of false positive errors, and

 that the spatial variation in abundance iN is adequately described by the assumed

statistical distribution, such as a Poisson, zero-inflated Poisson or negative binomial
(Chapter 6 in Kéry & Royle, 2016).

The effects of violations of these assumptions and some potential challenges encountered
when fitting the model have been studied by various authors, including Joseph et al. (2009),
Couturier et al. (2013), Dennis et al. (2015), Duarte et al. (2016), Kéry & Royle (2016: Section 6.7),
Barker et al. (2018), Link et al. (2018), Knape et al. (2018), and Kéry (2018). See also Section
19B.12 for further comments.

In summary, the simplest binomial N-mixture model to estimate abundance from
temporally and spatially replicated counts can be written succinctly in just two lines:

~ ()iN Poisson Biological process yields true state

, ~ (,)i t iy Binomial N p Observation process yields observations

We find it fascinating to note the similarity of this hierarchical species distribution model
model (Royle & Dorazio, 2006, 2008) for abundance and the one for occurrence that we saw in

6

Chapter 19, i.e., the occupancy model. Recognizing that in the occupancy model the observation
process for detection frequency data may also be described by a binomial distribution (rather
than by a Bernoulli), the sole thing that changes when we go from the modeling of occurrence to
that of abundance is the distribution used to model the biological process: a Poisson instead of a
Bernoulli. The binomial mixture model can be described as a binomial mixed-effects model that is
in some sense similar to a GLMM but has discrete (Poisson-distributed) random effects rather
than the normal random effects that are required for a GLMM. Alternatively, we could view the
binomial mixture model as a logistic regression for the observed counts, coupled with a Poisson
regression for the imperfectly observed abundances.

As in the occupancy model, covariate effects can be added in the N-mixture model by
modeling the Poisson parameter via a log link function and the binomial success rate p via the

logit link. Thus, we can add to the model expressions such as log()i ix and
(1) (2)

, 1 2 ,logit()i t i i tp x x , where
ix and (1)

ix are the values of a site covariate measured at

site i , and (2)

,i tx contains the values of a survey covariate measured at site i during survey t . It is

also possible to model distinct effects of the same covariate in the abundance and in the
detection parts of the model (Kéry 2008).

19B.2 Data generation

We will simulate replicate bullfinch counts within the 267 1 km2 quadrats in the Swiss MHB and
focus on the elevational gradient of bullfinch abundance. For fun, we work with the actual
average quadrat elevation in the MHB, which is available in the crossbill data set in the

unmarked package. The original data are expressed in meters and rounded to 50 m and we will
jitter them some to get nicer pictures.

In this chapter we will showcase a special type of predictions: spatial predictions. That is, after
fitting a model to the data (which we yet have to simulate), we will predict expected abundance
for all of Switzerland, to yield a simple species distribution model, or SDM. For this, we will need
the elevation data for all of Switzerland, which are available in the Switzerland data set in

unmarked. We load them and produce a map of Swiss elevation (Fig. 19B.2).

Load Swiss MHB elevation data for 267 quadrats

library(unmarked)

data(crossbill)

str(crossbill) # not shown

Pull out elevation data, jitter some and sort

set.seed(191)

mhbElev <- sort(jitter(crossbill$ele, factor = 2))

summary(mhbElev)

Histogram of elevation (not shown)

par(mar = c(5,5,5,3), cex.lab = 1.5, cex.axis = 1.5)

hist(mhbElev, breaks = 50, xlim = c(0, 3000),

 main = 'Mean elevation of 267 MHB quadrats in Switzerland')

7

Fig. 19B.2: Map of the elevation covariate in Switzerland. The pixel resolution is 1 km2 and the
domain of Switzerland comprises about 42,000 pixels.

Now, we are going to simulate bullfinch count data for the quadrats in the Swiss breeding bird
survey MHB, using the quadrat elevation as a covariate. Note that we pick values of a log-linear
regression of expected abundance on elevation that result in an elevational profile of the
abundance data that closely resembles similar data collected using the same protocol during the
latest Swiss breeding bird atlas (Knaus et al. 2018). For data simulation and data analysis, but not
for plots, we will work with a transformed variant of the elevation covariate. We will express
elevation in kilometric units, which produces more interpretable parameters than what we would
get by standardizing this continuous covariate, say, by use of scale(). The coefficient for
elevation will then quantify the expected change in log-abundance associated with a change in
elevation by 1000 metres.

Load the full Swiss landscape data and grab the elevation data

data(Switzerland)

ch <- Switzerland

str(ch)

chElev <- ch$elevation # Swiss elevation data in km units

summary(chElev)

Make a plot of elevation (Fig. 19B.2)

library(raster)

par(mfrow = c(1, 1), mar = c(3,4,4,8), cex.main = 1.5)

r1 <- rasterFromXYZ(data.frame(x = ch$x, y = ch$y, z = chElev))

mapPalette1 <- colorRampPalette(c("grey", "yellow", "orange", "red"))

plot(r1, col = mapPalette1(100), axes = FALSE, box = FALSE,

 main = "Swiss elevation map (in m)", zlim = c(0, 4500))

8

We first construct the relationship between elevation and abundance.

> table(N) # Distribution of abundances across sites

N

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 15 16

58 50 32 28 15 14 16 15 12 12 5 3 4 1 1 1

> sum(N > 0) / nSites # Empirical occupancy proportion

[1] 0.7827715

We see that in the simulated MHB bullfinch data set, true abundance per 1 km2 quadrat varies
between 0 and 16 territories, with most values in the range 0–9. Bullfinches occur in 78% of all
survey quadrats and are therefore absent in 22% of them.

We make a plot to show the relationships between expected (lambda) and realized
bullfinch abundance (N) and quadrat elevation (Fig. 19B.3, left). We can compute the value of
elevation that is associated with the maximum abundance by computing the vertex of the
parabola, or quadratic curve, from the values of coefficients of linear and quadratic elevation

above as 1 2/ 2 . We find that the true optimum elevation for the bullfinch in Switzerland is

1.21 km.

Simulate MHB "look-alike data" for the bullfinch

set.seed(191)

Pick design constants

nSites <- 267 # Number of quadrats, or sites

nVisits <- 3 # Number of occasions, or visits per site

Create scaled version of MHB elevation covariate with units of 1 km

mhbElevScaled <- mhbElev/1000

Pick values for the regression parameters in expected abundance

alpha.lam <- -3 # Intercept

beta1.lam <- 8.5 # Linear effect of elevation

beta2.lam <- -3.5 # Quadratic effect of elevation

Compute expected abundance (lambda) for MHB quadrats

lambda <- exp(alpha.lam + beta1.lam * mhbElevScaled + beta2.lam *

mhbElevScaled^2)

Compute realized abundance (N) for MHB quadrats

N <- rpois(n = nSites, lambda = lambda)

table(N) # Distribution of abundances across sites

sum(N > 0) / nSites # Empirical occupancy probability

9

This concludes our description of the biological process: we have a random process that
distributes bullfinches in space, i.e., across sites or quadrats, and we assume that the result of this
stochastic process at site i can be approximated by a conditional Poisson distribution with rate

parameter i , which itself depends on the average quadrat elevation ix in a quadratic fashion.

Next, we need to simulate the observation process, i.e., the chance process that generates

our observed counts ,i ty from true bullfinch abundance iN , that is, what we will consider the raw

data in this chapter. We assume that the observation process is also affected by elevation,
because wind speed increases with elevation, and greater wind speeds make bullfinch detection
harder. Therefore, we build into the data a negative relationship between detection probability
and elevation (Fig. 19B.3 middle).

We note in passing that in the N-mixture model, detection probability is defined per
individual animal, whereas in the occupancy model in Chapter 19, it refers to the probability to

detect at least one among the iN animals or plants present at a site.

Finally, we simulate three replicated counts, or repeated measurements of abundance, at each
site and then look at the data.

We plot the relationship between the observed counts and elevation. In Fig. 19B.3 (right) we see
that under the conditions in our data generation process, counts are on average lower than true

Figure 19B.3 left

State process (true states)

par(mfrow = c(1, 3), mar = c(6,6,5,3), cex.lab = 2, cex.axis = 2,

cex.main = 2)

plot(mhbElev, N, main = "Bullfinch abundance", pch = 16, cex = 2,

 col = rgb(0,0,0,0.4), frame = FALSE, xlim = c(0, 3000),

 ylim = c(0, 15), xlab = 'Elevation (m)', ylab = 'Abundance per 1km2')

lines(mhbElev, lambda, lwd = 7, col = rgb(1,0,0,0.4))

Compute optimal elevation for lambda (in kilometric units !)

(opt.elev.true <- - beta1.lam / (2 * beta2.lam))

Pick values for the 2 regression parameters in detection and get p

alpha.p <- 2

beta.p <- -2

p <- plogis(alpha.p + beta.p * mhbElevScaled)

Save true parameters into vector

truth <- c(alpha.lam=alpha.lam, beta1.lam=beta1.lam,

 beta2.lam=beta2.lam, alpha.p=alpha.p, beta.p=beta.p)

Figure 19B.3 middle

Observation process (characterized by detection probability)

plot(mhbElev, p, xlab = "Elevation (m)",

 ylab = " Detection probability (p)", type = 'l', frame = FALSE,

 xlim = c(0, 3000), lwd = 7, col = rgb(1,0,0,0.4),

 main = "Bullfinch detectability per survey", ylim = c(0, 1))

Simulate the observation process

C <- array(dim = c(nSites, nVisits))

for(j in 1:nVisits){

 C[,j] <- rbinom(n = nSites, size = N, prob = p)

}

10

abundance, because detection probability is less than 1. In addition, the observed relationship
between abundance and site elevation is biased, i.e., the observed counts are not spread out
around the red curve representing truth in the right panel in Fig. 19B.3. This is because the same
environmental covariate affects both the state process (resulting in abundance N) and the
observation process (which is represented by the parameter for detection probability, shown in
the middle panel). In fact, the expectation of the counts is given by the product of the expected
abundance (lambda) and detection probability. To emphasize this, we add the expected count as a
black curve in Fig. 19B.3 (right) as well.

Fig. 19B.3: A simulated system of true abundance and counts at 267 sites where bullfinches are
counted. Detection probability is imperfect and depends on the same environmental covariate
that also affects abundance, elevation. (Left) The true state: expected abundance (; red line)
and the realized abundance (N) at the 267 sites. (middle) The relationship between detection
probability (p) and elevation. (right) Observed counts (i.e., the raw data) at the 267 sites, with the
expected true abundance shown as the red line and the expected count (black line) superimposed
(red lines left and right are identical).

A conventional analysis would now use some sort of Poisson regression and model the observed
counts. One option of such a detection-naïve analysis would be to fit to the replicated counts a
Poisson GLMM with site random effects, to accommodate the likely dependence of counts at the
same site due to the same underlying N. Another common detection-naïve approach is to
consider the maximum count only and fit a simple Poisson GLM. Such analyses will model the
black bell-shaped cloud in the right panel of Fig. 19B.3, where abundance and detection
probability are confounded. Thus, compared to the truth represented by the red line, a
conventional detection-naïve analysis will underestimate average abundance and (in our case) will
also underestimate the optimum elevation.

It is instructive to inspect the true abundance at each site and compare them with the
replicated counts. Our model assumes that we can only make one of the two possible errors: we
can only fail to detect individuals, but we never count the same individual twice or make some

Figure 19B.3 right

Observed counts = 'relative abundance' = 'abundance index'

matplot(mhbElev, C, ylim = c(0, 15), xlab = "Elevation (m)", las = 1,

 ylab = "Counts (C)", main = "Observed bullfinch counts", pch = 16,

 cex = 2, col = rgb(0,0,0,0.4), frame = FALSE, xlim = c(0, 3000))

lines(mhbElev, lambda, type = "l", col = rgb(1,0,0,0.5), lwd = 7)

lines(mhbElev, lambda * p, type = "l", col = "black", lwd = 5)

11

other error that leads to false positive errors such as a species misidentification. Thus, in the
following comparison we can see that the observed counts can never be greater than the true
latent abundance (N).

 True state Obs Visit 1 Obs Visit 2 Obs Visit 3

 [1,] 0 0 0 0

 [2,] 0 0 0 0

 [3,] 1 1 1 1

 [4,] 0 0 0 0

 [5,] 1 1 1 1

 [6,] 0 0 0 0

 [7,] 0 0 0 0

 [8,] 0 0 0 0

 [9,] 1 1 1 1

 [10,] 0 0 0 0

...........

[141,] 4 2 4 2

[142,] 12 3 5 3

[143,] 8 3 4 3

[144,] 7 5 1 3

[145,] 8 5 4 5

[146,] 10 2 5 3

[147,] 7 2 4 2

[148,] 13 8 5 5

[149,] 8 5 6 2

[150,] 11 3 3 6

...........

[258,] 0 0 0 0

[259,] 1 0 0 0

[260,] 0 0 0 0

[261,] 0 0 0 0

[262,] 0 0 0 0

[263,] 0 0 0 0

[264,] 0 0 0 0

[265,] 0 0 0 0

[266,] 0 0 0 0

[267,] 0 0 0 0

We like to emphasize that a species occurrence distribution is fundamentally the same as an
abundance distribution, but with much reduced information content: a species occurs at all sites
where abundance 0N (Royle et al. 2005; Dorazio, 2007; see also Chapter 20). Hence, any
model of abundance is naturally also a model of species distribution in the sense of
presence/absence. We believe that it is seldom useful to think of the latter as something separate
from abundance.

The next block of code shows us that bullfinches occur in 209 of our 267 simulated MHB
quadrats, but that they were detected in only 186 of them. Thus, even though bullfinches were
present in the remaining 23 sites, the observers failed to detect them on all three surveys.

Compare true abundance with the replicated counts

cbind('True state' = N, 'Obs Visit 1' = C[,1], 'Obs Visit 2' = C[,2],

'Obs Visit 3' = C[,3])# Look true state and at three observed states at

each site

sum(apply(C, 1, sum) > 0) # Apparent distribution (prop. occupied sites)

sum(N > 0) # True occupancy

12

[1] 186

[1] 209

To conclude, we will plot the true abundance species distribution of our simulated bullfinches for
the entire modelled domain of Switzerland (Fig. 19B.4). We do this by using our chosen values for

the three parameters that govern the expected abundance, alpha.lam, beta1.lam and
beta2.lam, along with the elevation values of the Swiss landscape. Adding up the simulated
values of expected abundance over all quadrats yields the true Swiss population size of bullfinches
in our simulation, which we see is 128,119. This assumes sites are independent, e.g., that no
individual lives in more than one site.

library(raster)

Compute true expected abundance (lambda) for all Swiss quadrats

chElevScaled <- chElev / 1000

lambdaCH <- exp(alpha.lam + beta1.lam * chElevScaled + beta2.lam *

chElevScaled^2)

Inspect quadrat-level expected abundance

summary(lambdaCH)

hist(lambdaCH) # not shown

Plot true Swiss bullfinch abundance map (Fig. 19B.4)

par(mfrow = c(1, 1), mar = c(3,4,4,6), cex.main = 1.5)

r1 <- rasterFromXYZ(data.frame(x = ch$x, y = ch$y, z = lambdaCH))

mapPalette1 <- colorRampPalette(c("grey", "yellow", "orange", "red"))

plot(r1, col = mapPalette1(100), axes = FALSE, box = FALSE,

 main = "True Swiss SDM for the bullfinch (expected abundance)", zlim =

c(0, 9))

Add up to get Swiss total population size

(Ntot_true <- sum(lambdaCH))

13

Fig. 19B.4: The true species distribution map of the expected abundance of the Bullfinch (Pyrrhula
pyrrhula) in Switzerland. The total national population size in our simulation is 128,119 bullfinch
territories.

19B.3 A detection-naïve analysis of the maximum count per site

If we were content with ignoring imperfect detection, we could fit a Poisson GLMM (see Chapter
14) to the site-by-visit matrix of bullfinch counts, or a simpler Poisson GLM (Chapter 13) to the
vector of the maximum count per site. The maximum count is our best guess at how many
bullfinches occurred at each site, and indeed, use of the maximum count per site is a common
approach to compress the information in replicated counts. Hence, here is a quick and dirty
conventional analysis of the maximum counts assuming a Poisson distribution for this index of
abundance. We fit the model with linear and quadratic effects of elevation and make predictions
to obtain the elevation profile of the expected counts. We also compute approximate Wald-type
prediction intervals.

We compare the true number of bullfinch territores in the 267 simulated quadrats and a
detection-naïve estimate of this quantity, which is given by the sum of the maximum counts.

> sum(maxC) # Detection-naïve estimate of total N in 267 sample quads.

[1] 534

> sum(N) # True total N in 267 sample quadrats

[1] 908

We compare the true elevation profile of Swiss bullfinches and the profile estimated in the
detection-naïve analysis in a plot (Fig. 19B.4). We also compute the optimal elevation for bullfinch
abundance under the detection-naïve model and add that to the plot. We see that in the
detection-naïve analysis, we underestimate the optimal elevation for Swiss bullfinches by 96
meters relative to the known truth.

maxC <- apply(C, 1, max)

fm <- glm(maxC ~ mhbElevScaled + I(mhbElevScaled^2), family = poisson)

summary(fm) # not shown

pred.elev <- seq(0.2, 2.5, length.out = 1000) # Prediction covariate

lpred <- predict(fm, type = 'link', se = TRUE,

 newdata = data.frame(mhbElevScaled = pred.elev))

pred <- exp(lpred$fit)

LCL <- exp(lpred$fit-2*lpred$se)

UCL <- exp(lpred$fit+2*lpred$se)

sum(maxC) # Detection-naïve estimate of total N in 267 sample quadrats

sum(N) # True total N in 267 sample quadrats

14

> (opt.elev2 <- -fm$coef[2] / (2 * fm$coef[3]))

 mhbElev

1.118199

> (opt.elev2 - opt.elev.true) # Difference to true opt.elev in

simulation

 mhbElev

-0.09608642

Clearly, the predictions under the detection-naïve analysis yield a biased picture of the elevation
profile of bullfinch abundance, since in our simulation bullfinches are easier to detect at lower
elevations.

Fig. 19B.5: Relationship between bullfinch abundance and elevation in Switzerland, as inferred by
a detection-naïve analysis which does not account for detection probability (expected counts,
blue, with 95% CI). The true relationship between expected abundance (lambda) and elevation is
shown by the red line. The blue band is an estimate of the black curve in the right panel in Fig.
19B.3.

Fig. 19B.5

par(mar = c(5,5,4,2), cex.lab = 1.5, cex.axis = 1.5)

plot(1000*pred.elev, pred, type = 'l', col = rgb(0,0,1, 0.4), lwd = 3,

 xlab = "Elevation (m)", ylab = "Number", xlim = c(0, 3000), ylim =

c(0, 10), main = "Confounding of state and observation processes", frame

= FALSE)

polygon(c(1000*pred.elev, rev(1000*pred.elev)), c(LCL, rev(UCL)), col =

rgb(0,0,1, 0.2), border = NA)

points(mhbElev, maxC, col = rgb(0,0,0, 0.4), pch = 16, cex = 1.3)

lines(mhbElev, lambda, type = "l", col = rgb(1,0,0,0.5), lwd = 5)

(opt.elev2 <- -fm$coef[2] / (2 * fm$coef[3]))

(opt.elev2 - opt.elev.true) # Difference to true opt.elev in simulation

abline(v = 1000*opt.elev2, col = rgb(0,0,1,0.4), lwd = 3) # Observed

abline(v = 1000*opt.elev.true, col = rgb(1,0,0,0.4), lwd = 3) # True

15

For illustration, we go on making spatial predictions from the detection-naïve Poisson GLM
fitted to the maximum count at each site. We can obtain regional population size estimates from
such spatial predictions. Under the assumption that no individual can occur in more than a single
quadrat (i.e., that quadrats are independent), we can simply add the predictions over the
quadrats in the domain of interest. Below, we add them up over all of Switzerland, to obtain a
detection-naïve estimate of the Swiss national population size of bullfinches.

In Fig. 19B.6 we find that the bullfinch occurs most commonly at medium elevation.
Ignoring imperfect detection in our analysis of the maximum count per site, we obtain a
detection-naïve national population size estimate of 73,651 pairs, which is 43% too low. Note that
to obtain a SE or a CI for this estimate, we could use a non-parametric bootstrap; see Section 6.4.
in Kéry & Royle (2016).

> (SwissTotalMaxC <- sum(pred.lam_obs))

[1] 73651.16

Fig. 19B.6: A detection-naïve species distribution map of the relative abundance (or the expected
counts) of the Bullfinch (Pyrrhula pyrrhula) in Switzerland. We can add up the quadrat-specific
estimates of expected relative abundance over the approx. 42,000 1km2 quadrats and arrive at a
detection-naïve national population size estimate of 73,651 bullfinch territories.

Make predictions for all Switzerland: prototypical SDM (Fig. 19B.6)

pred.lam_obs <- predict(fm, type = "response",

 newdata = data.frame(mhbElevScaled = chElev/1000))

summary(pred.lam_obs)

par(mfrow = c(1, 1), mar = c(3,4,4,6), cex.main = 1.5)

r1 <- rasterFromXYZ(data.frame(x = ch$x, y = ch$y, z = pred.lam_obs))

mapPalette1 <- colorRampPalette(c("grey", "yellow", "orange", "red"))

plot(r1, col = mapPalette1(100), axes = FALSE, box = FALSE,

 main = "Detection-naive Swiss SDM for the bullfinch (expected max

counts)", zlim = c(0, 6))

Estimated national "relative population size"

(SwissTotalMaxC <- sum(pred.lam_obs))

16

Now, let's see whether we can improve with a hierarchical model that separately

estimates the true, latent state (i.e., abundance) and the parameters of the observation process
linking the true latent state and the observed counts. That is, we will now deploy all our usual
model-fitting engines to fit a binomial N-mixture model to the site-by-visit matrix of simulated
bullfinch counts.

19B.4 Likelihood analysis with canned functions in the R package unmarked

For our canned function to fit the model using maximum likelihood, we use again the R package
unmarked (Fiske & Chandler, 2011; Kellner et al., 2023), which has function pcount() to fit the
binomial N-mixture model to data from closed populations. In the first subsection, we will fit the
model. In the second subsection, we will make spatial predictions of the expected abundance
as a function of the estimated values of the involved parameters and the values of elevation in the
whole Swiss landscape. These predictions are derived quantities, for which the predict()
function does the error propagation for us and directly yields prediction standard errors and 95%
prediction intervals.

However, sometimes we will want to compute other types of functions of parameters, for
which we cannot use an inbuilt predict() method. Therefore, in the third subsection, we show
two general, non-Bayesian methods for obtaining an uncertainty assessment for a derived
quantity. Specifically, our derived quantity in this chapter is optimum elevation, which is a
function of two parameters for which we obtain estimates when fitting the model. We will give an
illustration of the delta method and a simple application of a parametric bootstrap to obtain
standard errors around the estimate of the optimum elevation. In Chapter 2, we have mentioned
the delta method in Section 2.5.5., and we have given full coverage of both the parametric and
the non-parametric bootstrap in Section 2.5.4.

19B.4.1 Fitting the model to the simulated bullfinch data set
As with the occupancy model in unmarked in Chapter 19, we first need to organize the data by
creating a specific type of unmarkedFrame data object. This may be confusing at first and so
when you start with unmarked, it is best to use some template code, e.g., from the help files or
from the books covering unmarked by Kéry & Royle (2016, 2021). Note that in a real analysis we
would want to consider centering or scaling of the elevation covariate, but we omit this here for
simplicity, since our analysis turns out to work without this.

unmarkedFrame Object

267 sites

Maximum number of observations per site: 3

load required packages

library(ASMbook); library(jagsUI); library(nimble); library(rstan);

library(TMB)

Load unmarked, format data and summarize

library(unmarked)

summary(umf <- unmarkedFramePCount(y = C,

 siteCovs = data.frame(elev=mhbElevScaled, elev2=mhbElevScaled ^2)))

17

Mean number of observations per site: 3

Sites with at least one detection: 186

Tabulation of y observations:

 0 1 2 3 4 5 6 7 8

322 185 120 71 39 39 11 8 6

Site-level covariates:

 elev elev2

 Min. :0.2193 Min. :0.04809

 1st Qu.:0.5827 1st Qu.:0.33958

 Median :1.1165 Median :1.24649

 Mean :1.1875 Mean :1.82244

 3rd Qu.:1.8187 3rd Qu.:3.30749

 Max. :2.7807 Max. :7.73212

Next, we use the pcount function along with an R formula and our unmarkedFrame to fit the

N-mixture model. As with the occupancy model in unmarked, the formula has two parts: the
first corresponds to the linear model for detection and the second to the linear model for
abundance.

We get a warning from unmarked about the value of K – what is K? Remember that we are
estimating a set of random effects (the true abundances N at each site) and thus as in Chapters 7,
10, 14, and 17, we need to integrate out these random effects when fitting the model with
integrated likelihood. The value of K represents the upper bound of this integration. It should be
set so that it is much larger than the maximum possible true abundance at any one site. Of course,
we don’t know this value (that’s why we’re fitting the model), so we’ll have to make an informed
guess. If we set K too low, we will get incorrect parameter estimates. However, you don’t want to
make the value of K too large either, since the larger the value of K, the slower the model will run.

unmarked sets the value by default at the maximum count + 100. This is likely much larger than
necessary for our dataset and indeed for most data sets (Kéry 2018).

To illustrate the effect of the choice of K on model results, below we re-fit the model with
varying values of K and plot the resulting AIC scores. Once K is “large enough” we should see the
AIC values stabilize.

out19B.4 <- pcount(~ elev ~ elev + elev2, data = umf)

18

Check for sensitivity of solutions to choice of K

fhm11 <- pcount(~elev ~ elev+elev2, data=umf, K = 11)

fhm13 <- pcount(~elev ~ elev+elev2, data=umf, K = 13)

fhm20 <- pcount(~elev ~ elev+elev2, data=umf, K = 20)

fhm50 <- pcount(~elev ~ elev+elev2, data=umf, K = 50)

fhDef <- pcount(~elev ~ elev+elev2, data=umf) # With default K = 108

fhm200 <- pcount(~elev ~ elev+elev2, data=umf, K = 200)

Show only the part where something happens ...

aic <- c(fhm20@AIC, fhm50@AIC, fhDef@AIC, fhm200@AIC)

k <- c(20, 50, 108, 200)

loglik <- sapply(list(fhm20, fhm50, fhDef, fhm200), logLik)

... or the whole range of values tried out for K

aic <- c(fhm11@AIC, fhm13@AIC, fhm20@AIC, fhm50@AIC, fhDef@AIC,

fhm200@AIC)

k <- c(11, 13, 20, 50, 108, 200)

loglik <- sapply(list(fhm11, fhm13, fhm20, fhm50, fhDef, fhm200),

logLik)

Plot both AIC and log-likelihood (Fig. 19B.7)

par(mfrow=c(2,1), mar = c(6,6,4,2), cex.lab = 1.5, cex.axis = 1.5)

plot(k, aic, type='l', ylab="AIC", xlab="Value of K", xlim=c(9, 200),

frame = FALSE, ylim = c(1785, 1800))

points(k, aic, col='red', pch=16, cex = 2)

plot(k, loglik, type='l', ylab="log-likelihood", xlab="Value of K",

 xlim=c(9, 200), frame = FALSE, ylim = c(-895, -888))

points(k, loglik, col='blue', pch=16, cex = 2)

19

Fig. 19B.7: Assessment of whether the chosen summation limit (K) in the numerical evaluation of
the integrated likelihood of the N-mixture model is sufficient, i.e., does not affect the solutions.
We can do this assessment by varying the value of K and observing how the AIC or the log-
likelihood change. The default K in unmarked is 100 plus the highest count in the data set.

We see in Figure 19B.7 that choosing a value of K below 20 has large impacts on the model
estimates, but the default value of (in our case) 108 should be adequate.

Using our original model, we go on to inspect the estimates first and then use the
predict function to investigate the functional forms between expected abundance (lambda)
and detection probability (p) on the one hand, and elevation on the other (Fig. 19B.8). In contrast
to the detection-naive analysis (Fig. 19B.5) we find the inferences from the model that corrects for
imperfect detection more satisfactory, albeit with considerable uncertainty in the predictions of
lambda for higher values of the vegetation covariate.

Call:

pcount(formula = ~elev ~ elev + elev2, data = umf)

Abundance:

 Estimate SE z P(>|z|)

(Intercept) -3.55 0.304 -11.7 1.38e-31

elev 9.20 0.594 15.5 3.27e-54

elev2 -3.66 0.320 -11.4 2.35e-30

Detection:

 Estimate SE z P(>|z|)

(Intercept) 2.18 0.352 6.19 5.97e-10

elev -2.25 0.438 -5.15 2.67e-07

AIC: 1788.085

print(out19B.4)

unm_est <- coef(out19B.4) # Save estimates

Make predictions of abundance and detection(Fig. 19B.8)

state.pred <- predict(out19B.4, type = 'state')

det.pred <- predict(out19B.4, type = 'det')

p.pred <- matrix(det.pred[,1], nrow = nSites, byrow = TRUE) # reformat

p.LCL <- matrix(det.pred[,3], nrow = nSites, byrow = TRUE) # reformat

p.UCL <- matrix(det.pred[,4], nrow = nSites, byrow = TRUE) # reformat

20

Fig. 19B.8: Comparison of the true relationships with elevation (red) and those estimated from the
binomial N-mixture model fit with maximum likelihood in the R package unmarked.

 truth unmarked

alpha.lam -3.0 -3.554

beta1.lam 8.5 9.205

beta2.lam -3.5 -3.661

alpha.p 2.0 2.181

beta.p -2.0 -2.252

Plot predicted elevation profiles for state and observation processes

par(mfrow = c(1, 2), mar = c(5,5,4,2), cex.lab = 1.5, cex.axis = 1.5)

Expected abundance (lambda)

plot(mhbElev, state.pred[,1], xlab = 'Elevation (m)', ylab = 'lambda',

frame = FALSE, col = 'blue', lwd = 3, main = 'State process', type =

'l', ylim = c(0, 15))

lines(mhbElev, lambda, lwd = 3, col = 'red')

polygon(c(mhbElev, rev(mhbElev)), c(state.pred[,3],

rev(state.pred[,4])), col = rgb(0,0,1, 0.2), border = NA)

legend('topleft', legend = c('Estimate', 'Truth'), lwd = 3, col =

c('blue', 'red'), bty = 'n', cex = 1.3)

Detection

plot(mhbElev, p.pred[,1], xlab = 'Elevation (m)', ylab = 'Detection

prob.', frame = FALSE, col = 'blue', lwd = 3, main = 'Observation

process', type = 'l', ylim = c(0, 1))

lines(mhbElev, p, lwd = 3, col = 'red')

polygon(c(mhbElev, rev(mhbElev)), c(p.LCL[,1], rev(p.UCL[,1])), col =

rgb(0,0,1, 0.2), border = NA)

Compare parameter estimates with truth

comp <- cbind(truth=truth, unmarked=unm_est)

print(comp, 4)

21

 truth naive unmarked

 908 534 979

19B.4.2 Spatial prediction of expected abundance
Next, we make spatial predictions on the entire Swiss elevation landscape to compare with the
detection-naïve species distribution map in Fig. 19B.6. Spatial prediction is an application of the
estimated regression relationship to the environmental values in some real landscape. That is, we
can get spatial predictions of the expected bullfinch abundance per 1 km2 quadrat by plugging the
estimates of the three parameters in the abundance model into the equation

2

1 2exp()i i ix x along with the actual values of elevation (linear and squared) in

Switzerland. (Note that this is what we get by exponentiating both sides of the linear predictor in

the model, 2

1 2log()i i ix x .)

Clearly, predictions are a form of derived quantity, or functions of parameters, since they

depend (in our case) on the values of three estimated parameters, , 1 and 2 . Therefore, the

uncertainty of this function will depend on the estimates of these parameters and on the
uncertainty in each of them. When we use the function predict() on a fitted model object in
unmarked, we directly obtain the point estimates, along with standard errors and a 95%
confidence interval. The point estimates correspond to what we get when we evaluate

2

1 2exp()i i ix x with the MLEs and the supplied values of the covariate x, while the SEs

and CIs are obtained internally using the delta method; see Section 2.5.5 and 19B.4.3.

We get one prediction, with SE and confidence limits, for every quadrat in the Swiss landscape for
which we supplied values of the elevation covariate in the newdata argument. Note that by
default, these predictions are on the inverse-link scale, i.e., these are mean abundance estimates,
and not log-transformed mean abundance estimates.

'data.frame': 42275 obs. of 4 variables:

 $ Predicted: num 0.428 0.428 0.557 0.594 0.48 ...

 $ SE : num 0.0636 0.0636 0.0751 0.0781 0.0684 ...

 $ lower : num 0.32 0.32 0.428 0.459 0.363 ...

 $ upper : num 0.573 0.573 0.726 0.769 0.634 ...

> head(pred.lam)

 Predicted SE lower upper

1 0.4283817 0.06364944 0.3201536 0.5731963

2 0.4283817 0.06364944 0.3201536 0.5731963

Compare estimated total population size in surveyed sample to truth

true_Ntotal <- sum(N)

naive_Ntotal <- sum(apply(C, 1, max))

unm_Ntotal <- sum(bup(ranef(out19B.4)))

comp <- c(truth=true_Ntotal, naive=naive_Ntotal, unmarked=unm_Ntotal)

print(comp, 1)

Make predictions for all Switzerland

pred.lam <- predict(out19B.4, type = "state",

 newdata = data.frame(elev = chElevScaled, elev2 = chElevScaled^2))

str(pred.lam)

head(pred.lam)

summary(pred.lam)

22

3 0.5571211 0.07512157 0.4277348 0.7256458

4 0.5938605 0.07812907 0.4588801 0.7685456

5 0.4796815 0.06841139 0.3627070 0.6343806

6 0.4796815 0.06841139 0.3627070 0.6343806

> summary(pred.lam)

 Predicted SE lower upper

 Min. :0.0000 Min. :0.00000 Min. :0.0000 Min. : 0.0000

 1st Qu.:0.6326 1st Qu.:0.09586 1st Qu.:0.3761 1st Qu.: 0.9771

 Median :1.7130 Median :0.20225 Median :1.2206 Median : 2.5810

 Mean :3.0648 Mean :0.55442 Mean :2.2071 Mean : 4.5285

 3rd Qu.:5.3069 3rd Qu.:0.92584 3rd Qu.:3.8726 3rd Qu.: 7.8909

 Max. :9.3217 Max. :1.99346 Max. :6.8537 Max. :13.4439

We can now plot or otherwise visualize or summarize these predictions. First, we plot both the
point predictions as well as their SEs and the lower and upper bounds of their 95% CI (Fig. 19B.9).
This is the Holy Grail in Chapter 8 of the AHM1 book.

The Holy Grail (Fig. 19B.9)

mapPalette1 <- colorRampPalette(c("grey", "yellow", "orange", "red"))

par(mfrow = c(2, 2), mar = c(3,4,4,6), cex.main = 1.5)

r1 <- rasterFromXYZ(data.frame(x = ch$x, y = ch$y, z = pred.lam[,1]))

plot(r1, col = mapPalette1(100), axes = FALSE, box = FALSE,

 main = "Swiss SDM for the bullfinch\n(estimated true abundance,

lambda)", zlim = c(0, 10))

r2 <- rasterFromXYZ(data.frame(x = ch$x, y = ch$y, z = pred.lam[,2]))

plot(r2, col = mapPalette1(100), axes = FALSE, box = FALSE,

 main = "Prediction SE", zlim = c(0, 2))

r3 <- rasterFromXYZ(data.frame(x = ch$x, y = ch$y, z = pred.lam[,3]))

plot(r3, col = mapPalette1(100), axes = FALSE, box = FALSE,

 main = "Uncertainty (Lower limit of 95% CI)", zlim = c(0, 14))

r4 <- rasterFromXYZ(data.frame(x = ch$x, y = ch$y, z = pred.lam[,4]))

plot(r4, col = mapPalette1(100), axes = FALSE, box = FALSE,

 main = "Uncertainty (Upper of 95% CI)", zlim = c(0, 14))

23

Fig. 19B.9: The Holy Grail for simulated Swiss bullfinches: A species distribution map of the
estimated abundance (lambda) in Switzerland (top left). Compare this with the detection-naïve
variant of this SDM in Fig. 19b.5. Adding up the map yields a national population size estimate of
129,562 bullfinches. The other maps show the SEs and the lower and upper bounds of a 95% CI.

To obtain regional or national population size estimates, we can simply add up the quadrat-level
predictions for the desired region or (here) for the entire country. Note that this always assumes
independence of the quadrats, which includes the assumption that no bird can be detected in
more than a single quadrat.

> (SwissTotalN <- sum(pred.lam[,1]))

[1] 129562.3

> # Compare with true national population size

> Ntot_true

[1] 128119.2

This estimate is almost embarrassingly close to the true value. (Disclaimer: You will not always get
so good results from an N-mixture model. You can easily ascertain this by changing the seeds at
the start of this chapter and repeating everything up to here.)

Estimated national population size

(SwissTotalN <- sum(pred.lam[,1]))

Compare with true national population size

Ntot_true

24

19B.4.3 Computing SEs for a derived quantity using the delta method and the
bootstrap
What if we have a derived quantity that is not a prediction of a regression model and thus we
cannot use predict() to obtain point estimates and uncertainty assessments? The optimum
elevation of Swiss bullfinch abundance is such a function. It is the ratio of two regression

parameters, or more specifically, 1

22

. To obtain a standard error around this estimate in a

frequentist mode of inference, we can use the delta method or a bootstrap. We next give an
illustration of both.

[1] 1.257289

The delta method gives a linear approximation to the standard error of a function of
estimated parameters in a model. To apply it, we must either be able to derive it from first
principles (for good explanations, see Williams et al., 2002, and Powell, 2007), or else we must
find a place where we can look it up for our specific function of interest. In addition, as we will see
below, we need the MLEs of the parameters and the variance-covariance matrix of these
estimates.

Luckily for us, Powell (2007) gives the equation for the variance, i.e., the squared standard

error, of the ratio of two estimated parameters ̂ and ̂ , when there is a covariance between

them, i.e., when their estimates are correlated (see his equations 15–17).

2

2 2

ˆ ˆˆ ˆ ˆ ˆvar() var() 2 cov(,)
var() ()

ˆ ˆ ˆ ˆˆ ˆ

For our application of the optimum elevation of Swiss bullfinch abundance, we can set 1

and 22 , and we get this angst-inspiring beast:

21 1 1 2

2 2

2 2 1 2 1 2

ˆ ˆ ˆ ˆ ˆˆvar() var(2) 2 cov(,)
var() ()

ˆ ˆ ˆ ˆ ˆ ˆ2 2 (2)

Thus, we can see that the variance (i.e., the square of the SE) of the estimate of optimum
elevation depends on the point estimates of the coefficients of elevation (linear) and elevation
(squared), on their variance, and also on the correlation between these two estimates --- this is
the covariance term at the end.

Next, we pull out the required ingredients from the unmarked fitted model object. If
you're unsure about what the raw output from function optim() means, please go back to
Chapters 2 and 4 for a refresher.

Point estimate of optimal elevation (in metres; unmarked solution)

opt.elev.um <- -coef(out19B.4)[2] / (2 * coef(out19B.4)[3])

opt.elev.um

25

Finally, we plug them into the equation from above.

> sqrt(var_elev.opt) # SE is square root of variance

 lam(elev)

0.05350604

Excitingly, this seems to work! But let's validate this solution. We will do this by comparing this
estimate with that obtained from a parametric bootstrap for the variance estimation of an
estimator. We use a simple parametric bootstrap (without refitting of the model) to draw a large

number of samples from the sampling distribution of 1 and 2 (Fig. 19B.10, left), and compute

the desired function for each pair of values (1 , 2). In this way, we obtain the sampling

distribution of the target function, i.e., of the optimum elevation. Then, we take the standard
deviation of that, which provides our parametric bootstrap solution to the problem.

Importantly, we won't draw 1 and 2 from two separate normal distributions, but rather

from a bivariate normal distribution, which preserves the correlation between the two estimates.
This is analogous in a sense to incorporating the covariance term in the delta method formula
above. We also plot the empirically derived (i.e., bootstrapped) sampling distribution of the
optimum elevation (Fig. 19B.10, right).

Get the ingredients for the beast

out19B.4 # Output from pcount()

str(out19B.4@opt) # Internal output from optim()

(VC <- solve(out19B.4@opt$hessian)) # Get VC matrix from Hessian

(b1_hat <- coef(out19B.4)[2]) # Point estimate of elev linear

(b2_hat <- coef(out19B.4)[3]) # ... of elev squared

(var_b1 <- VC[2,2]) # Variance of elev linear

(var_b2 <- VC[3,3]) # ... of elev squared

(cov_b1_b2 <- VC[2,3]) # Covariance between elev linear and squared

Get delta-method approximation of SE of optimum elevation

var_elev.opt <- (-b1_hat / (2*b2_hat))^2 *

 (((2^2 * var_b2) / (2^2 * b2_hat^2)) +

 (var_b1 / b1_hat^2) -

 ((2 * cov_b1_b2) / (b1_hat * b2_hat)))

sqrt(var_elev.opt) # SE is square root of variance

Get parametric bootstrap approximation of SE of optimum elevation

library(MASS) # Load MASS for mvrnorm()

?mvrnorm # Check syntax

Get mean vector and vc matrix for beta1 and beta2

(mu <- c(b1_hat, b2_hat)) # Collect means

(vc <- VC[2:3, 2:3]) # Get relevant part of VC matrix from above

Draw large number of values from this multivariate normal distribution

boot_beta <- mvrnorm(n = 100000, mu = mu, Sigma = vc)

Compute the function that gives optimum elevation

opt.elev_boot <- -boot_beta[,1] / (2 * boot_beta[,2])

26

Fig. 19B.10: Empirical sampling distributions (left) of the coefficients of elevation linear (1) and

elevation squared (2) and (right) of the frequentist estimator of the optimum elevation for the

abundance of simulated Swiss bullfinches, i.e., of the function 1 2/ (2) .

We compute the 95% CIs based on the bootstrapped sampling distribution of the optimum
elevation. And finally, we compare the delta-method and the parametric bootstrap solutions and
find them very similar (note that this will not always be the case).

> (CI_opt.elev <- quantile(opt.elev_boot, c(0.025, 0.975)))

 2.5% 97.5%

1.163774 1.377985

> print(comp, 4)

 Delta method Parametric Bootstrap

 0.05351 0.05474

In the next section, we will compare these SE estimates with a Bayesian solution based on
posterior draws.

Plot bivariate sampling distribution of beta1 and beta2 and

sampling distribution of -b1 / (2 x b2) # Fig. 19B.10

par(mfrow = c(1, 2), mar = c(5,5,5,6), cex.main = 1.5, cex.lab = 1.5,

 cex.axis = 1.5)

plot(boot_beta, asp = 1, xlab = 'beta1', ylab = 'beta2', frame = FALSE,

 pch = 16, col = rgb(0, 0, 0, 0.2), main = 'Bivariate sampling

distribution\n of beta1 and beta2')

hist(1000*opt.elev_boot, breaks = 50, main = 'Sampling distribution\nof

optimum elevation', xlab = 'Elevation (m)', xlim = c(1000, 1600))

Get parametric-bootstrapped SE and CI of optimum elevation

SE and CIs are SD and 0.025/0.975th percentiles

SE_opt.elev <- sd(opt.elev_boot)

(CI_opt.elev <- quantile(opt.elev_boot, c(0.025, 0.975)))

Compare two non-Bayesian solutions to the SE of optimum elevation

comp <- c(sqrt(var_elev.opt), SE_opt.elev)

names(comp) <- c("Delta method", "Parametric Bootstrap")

print(comp, 4)

27

19B.5 Bayesian analysis with JAGS

Next, the Bayesian solution with JAGS. We will also add into the code computation of the
optimum elevation of the expected abundance of our simulated bullfinches in Switzerland.

List of 5

 $ C : int [1:267, 1:3] 0 0 1 0 1 0 0 0 1 0 ...

 $ elev : num [1:267] 0.219 0.231 0.253 0.311 0.311 ...

 $ elev2 : num [1:267] 0.0481 0.0532 0.064 0.0965 0.097 ...

 $ nSites : num 267

 $ nVisits: num 3

In our model we also add code to assess goodness-of-fit using a posterior predictive check for a
Chi-squared discrepancy measure. Note that we know that the coefficients for elevation in the
abundance part of the model are quite large. Therefore, we use wide Gaussian priors in the
analysis, since we want our priors to be vague to minimize the amount of information that they
contribute towards the estimation. Of course, this is not something that we could know with a
data set that was not simulated. However, also with a real-world data set we could either
compare different priors (i.e., conduct a prior sensitivity analysis) or compare the Bayesian point
estimates with the MLEs for different priors.

Bundle and summarize data

elev2 <- mhbElevScaled^2 # squared elevation

str(dataList <- list(C=C, elev = mhbElevScaled, elev2 = elev2,

 nSites = nSites, nVisits = nVisits))

28

As for the occupancy model in Chapter 19, adequate starting values for the latent abundance

states, i.e., the latent variables iN , are essential. We use the maximum count at each site as a

guess of what N might be and add 1 to avoid zeros, which sometimes cause initialization
problems.

Write JAGS model file

cat(file="model19B.5.txt", "

model {

Priors

mean.lam ~ dunif(0, 1)

alpha.lam <- log(mean.lam)

beta1.lam ~ dnorm(0, 0.001)

beta2.lam ~ dnorm(0, 0.001)

mean.p ~ dunif(0, 1)

alpha.p <- logit(mean.p)

beta.p ~ dnorm(0, 0.001)

Likelihood

Biological model for true abundance

for (i in 1:nSites) { # Loop over sites

 N[i] ~ dpois(lambda[i])

 log(lambda[i]) <- alpha.lam + beta1.lam * elev[i] + beta2.lam *

elev2[i]

}

Observation model for replicated counts

for (i in 1:nSites) { # Loop over sites

 for (t in 1:nVisits) { # Loop over all n observations

 C[i,t] ~ dbin(p[i,t], N[i])

 logit(p[i,t]) <- alpha.p + beta.p * elev[i]

 }

}

Derived quantities

totalN <- sum(N[]) # Estimate total population size across all sites

opt.elev <- -beta1.lam / (2 * beta2.lam) # Optimum elevation

Assess model fit using Chi-squared discrepancy

for (i in 1:nSites) { # Loop over sites

 for (t in 1:nVisits) { # Loop over all n observations

 # Compute fit statistic for observed data

 eval[i,t] <- p[i,t]*N[i]

 E[i,t] <- pow((C[i,t] - eval[i,t]),2) / (eval[i,t] + 0.01)# Avoid

div. by 0 !

 # Generate replicate data and compute fit stats for them

 C.new[i,t] ~ dbin(p[i,t], N[i])

 E.new[i,t] <- pow((C.new[i,t] - eval[i,t]),2) / (eval[i,t] + 0.01)

 }

}

fit <- sum(E[,])

fit.new <- sum(E.new[,])

}

")

29

For convenience, we add in the list of parameters to estimate the intercepts of abundance and
detection in both their link-scale and their natural-scale variants.

N-mixture models are one of the harder models in this book to fit in practice and we need long
chains. With this model you now get the first hint at what Bayesian modeling often feels like 'in
practice', i.e., for the analyses on which many of the papers that you read are based one often
needs a lot of patience.

We first check whether this model run has converged by looking at the traceplots and by checking
out whether any parameter has a value of the Rhat (Brooks-Gelman-Rubin) statistic that is greater
than our rule of thumb of 1.1.

Function to generate starting values

Nst <- apply(C, 1, max) + 1

inits <- function(){list(N = Nst, mean.lam=runif(1, 0, 1),

beta1.lam=rnorm(1, 0, 1), beta2.lam=rnorm(1, 0, 1), mean.p=runif(1),

beta.p=rnorm(1, 0, 1))}

Parameters to estimate

params <- c("alpha.lam", "beta1.lam", "beta2.lam", "alpha.p", "beta.p",

"mean.lam", "mean.p", "totalN", "fit", "fit.new", "opt.elev", "N")

MCMC settings

na <- 10000; ni <- 150000; nb <- 50000; nc <- 4; nt <- 100

na <- 50; ni <- 1100; nb <- 100; nc <- 4; nt <- 2 # test

Call JAGS (ART 11 min)

out19B.5 <- jags(dataList, inits, params, "model19B.5.txt", n.iter = ni,

 n.burnin = nb, n.chains = nc, n.thin = nt, n.adapt = na,

 parallel = TRUE)

Traceplots (Fig. 19B.11)

jagsUI::traceplot(out19B.5) # All parameters

jagsUI::traceplot(out19B.5, c("alpha.lam", "beta1.lam", "beta2.lam",

"alpha.p", "beta.p", "opt.elev", "totalN"), layout = c(3, 3)) # Key

parameters only

Check out the Rhat values

which(out19B.5$summary[,8] > 1.1) # anybody not converged?

out19B.5$summary[which(out19B.5$summary[,8] > 1.1) ,8] # how bad?

Look at traceplot for parameter that has not converged

jagsUI::traceplot(out19B.5, c("N[2]"), layout = c(2, 2))

30

Fig. 19B.11: Traceplots for some of the key parameters in the N-mixture model fit to the simulated
Swiss bullfinches.

We find that our MCMC settings are good enough to achieve convergence for all main parameters
in the model. Depending on the run, the chains for one or two latent variables (or discrete
random effects, N) may not have quite converged, but in a hierarchical model, we will have to
worry most about convergence of the main structural parameters in the upper levels of the
hierarchy. For these, convergence is good enough in our case, so we're happy.

Next, we check the goodness-of-fit of the model using a visual posterior predictive check,
along with a Bayesian p-value, and find fit to be satisfactory (Fig. 19B.12) --- again, not a surprise
for our simulated data.

Compute Bayesian p-value and print

(bpv <- mean(out19B.5$sims.list$fit.new > out19B.5$sims.list$fit))

Fig. 19B.12

par(mar = c(6,6,5,4), cex.axis = 1.3, cex.lab = 1.3, cex.main = 1.3)

plot(out19B.5$sims.list$fit, out19B.5$sims.list$fit.new,

 main = paste("Bayesian p-value:", round(bpv, 4)),

 xlab = "Discrepancy for actual data set",

 ylab = "Discrepancy for perfect data sets",

 pch= 16, cex = 1.2, col = rgb(0,0,0,0.2), frame = FALSE)

abline(0,1, lwd = 2, col = "black")

31

Fig. 19B.12: Posterior predictive check of the binomial N-mixture model using a Chi-squared
discrepancy.

The graphical check and the Bayesian p-value both indicate an adequate model for our data set.
Hence, we inspect the parameter estimates and then compare them with truth in the data-
generating process and with the estimates produced by the other engines so far.

 mean sd 2.5% 50% 97.5% overlap0 f Rhat n.eff

alpha.lam -3.498 0.291 -4.082 -3.490 -2.922 FALSE 1 1.002 971

beta1.lam 9.129 0.560 8.013 9.125 10.221 FALSE 1 1.003 785

beta2.lam -3.635 0.296 -4.192 -3.648 -3.008 FALSE 1 1.004 643

alpha.p 2.127 0.344 1.485 2.116 2.842 FALSE 1 1.006 400

beta.p -2.212 0.426 -3.120 -2.181 -1.479 FALSE 1 1.005 479

mean.lam 0.032 0.009 0.017 0.031 0.054 FALSE 1 1.003 924

mean.p 0.889 0.033 0.815 0.892 0.945 FALSE 1 1.008 365

totalN 1012.839 203.256 778.000 965.000 1524.050 FALSE 1 1.005 1062

fit 340.727 32.968 285.632 337.663 411.511 FALSE 1 1.002 931

fit.new 346.017 44.915 273.356 341.703 446.164 FALSE 1 1.001 1682

opt.elev 1.259 0.055 1.177 1.251 1.395 FALSE 1 1.004 665

N[1] 0.001 0.027 0.000 0.000 0.000 TRUE 1 1.051 4000

N[2] 0.001 0.027 0.000 0.000 0.000 TRUE 1 1.292 1333

N[3] 1.004 0.067 1.000 1.000 1.000 FALSE 1 1.022 4000

......

Fig. 19B.13 gives a graphical comparison between the parameter estimates under the N-mixture
model and the values of the associated data-generating parameters. It shows again that the
model does a good job at estimating abundance. In the bottom-right panel, we note that the

posterior distribution of totalN is strongly skewed to the right. This is quite typical for
parameters that are bounded on one side, such as population sizes, variances, or standard
deviations. For them, our typical choice of the posterior mean as a Bayesian point estimator is not
ideal, and the mode or the median should be used instead. Therefore, here and further down in
this chapter, we will use the posterior median as a point estimator for population size parameters.

print(out19B.5, 3)

32

We see that with truth being 908 bullfinch territories, our estimate of totalN (965 territories)
appears quite good when compared with the sum of the max counts across all 267 sites, which is
534.

Fig. 19B.13: Comparison of estimates under the binomial N-mixture model (posterior
distributions) and truth in the data-generating algorithm (red line) for six estimands.

par(mfrow = c(3,2), mar = c(5,5,4,3), cex.lab = 1.5, cex.axis = 1.5)

hist(out19B.5$sims.list$alpha.lam, col = "grey", main = "alpha.lam",

xlab = "", breaks = 50)

abline(v = alpha.lam, lwd = 3, col = "red")

hist(out19B.5$sims.list$beta1.lam, col = "grey", main = "beta1.lam",

xlab = "", breaks = 50)

abline(v = beta1.lam, lwd = 3, col = "red")

hist(out19B.5$sims.list$beta2.lam, col = "grey", main = "beta2.lam",

xlab = "", breaks = 50)

abline(v = beta2.lam, lwd = 3, col = "red")

hist(out19B.5$sims.list$alpha.p, col = "grey", main = "alpha.p", xlab =

"", breaks = 50)

abline(v = alpha.p, lwd = 3, col = "red")

hist(out19B.5$sims.list$beta.p, col = "grey", main = "beta.p", xlab =

"", breaks = 50)

abline(v = beta.p, lwd = 3, col = "red")

hist(out19B.5$sims.list$totalN, col = "grey", , main = "Total N", xlab =

"", breaks = 50)

abline(v = sum(N), lwd = 3, col = "red")

33

We next illustrate a few further inferences that can be made under the model by looking

at more posterior distributions. In Fig. 19B.13 we have seen those for some primary parameters of
the model. One of the most interesting things in the N-mixture model is perhaps that site-specific

abundance estimates, i.e., iN , can easily be obtained. Let’s have a look at these estimates of local

abundance for a sample of these sites (Fig. 19B.14). You can browse through all posteriors of N
using the following code (note to RStudio users: this may break for your variety of R). We see
again highly skewed posterior distributions, for which the posterior median or mode should be
used as a point estimator, rather than the posterior mean.

Fig. 19B.14: Comparison of estimates of local population size (iN) under the N-mixture model

(posterior distributions) at a sample of six sites. The maximum count at each side is denoted by
the black line and the true population size in the simulated data by the dashed red line.

Then, in Fig. 19B.15 we show a comparison of the relationship between bullfinch abundance and
elevation using a detection-naïve analysis and under the N-mixture model.

par(mfrow = c(2,3), mar = c(5,5,5,3), cex.main = 1.5, cex.axis = 1.5,

cex.lab = 1.5, ask = TRUE)

 # for(i in 1:nSites){ # Do this for plots of all sites

 for(i in 151:156){ # Do this to produce Fig. 19B.14

 hist(out19B.5$sims.list$N[,i], col = "grey",

 xlim = range(c(max(C[i,]), out19B.5$sims.list$N[,i])),

 main = paste("Site", i), xlab = "Population size N", freq = FALSE)

 abline(v = Nst[i]-1, lwd = 3, col = "black")

 abline(v = N[i], lwd = 3, lty = 2, col = "red")

}

34

Fig. 19B.15: Comparison of the estimated abundance-elevation relationship in Swiss bullfinches
under a detection-naïve approach that ignores imperfect detection (grey) with that under the
binomial N-mixture model (blue). Truth is shown in red: circles are the realized abundances at

each site (iN) and the line shows the expected abundance.

Comparing the MLEs of the main parameters in the model from unmarked with the posterior
means we see a very good numerical agreement.

 truth unmarked JAGS

alpha.lam -3.0 -3.55 -3.50

beta1.lam 8.5 9.20 9.13

beta2.lam -3.5 -3.66 -3.63

Fig. 19B.15

par(mar = c(5,5,5,3), cex.main = 1.5, cex.axis = 1.5, cex.lab = 1.5)

plot(mhbElev, N, main = "", xlab = "Elevation (m)", ylab = "Abundance",

las = 1, ylim = c(0, max(N)), pch = 16, col = rgb(1,0,0,0.5), cex = 1.3,

frame = FALSE)

lines(mhbElev, lambda, col = rgb(1,0,0,0.5), lwd = 5)

Nmix.pred <- exp(out19B.5$mean$alpha.lam + out19B.5$mean$beta1.lam *

mhbElevScaled + out19B.5$mean$beta2.lam * mhbElevScaled^2)

lines(mhbElev, Nmix.pred, type = "l", col = rgb(0,0,1,0.5), lwd = 5)

lines(1000*pred.elev, pred, col = rgb(0,0,0,0.5), lwd = 5)

legend("topright", lwd = 5, col = c(rgb(0,0,1,0.5), rgb(1,0,0,0.5),

rgb(0,0,0,0.5)), legend = c("Nmix", "True", "Detection-naive"))

Compare likelihood with Bayesian estimates and with truth

Parameter estimates

jags_est <- unlist(out19B.5$mean)[1:5]

comp <- cbind(truth = truth, unmarked = unm_est, JAGS = jags_est)

print(comp, 3)

35

alpha.p 2.0 2.18 2.13

beta.p -2.0 -2.25 -2.21

Concerning the optimum elevation of bullfinch abundance in Switzerland, the detection-naïve
analysis yields an underestimate by 96 metres, while the estimates from unmarked and JAGS are
very similar and overestimate this value by about 45 metres.

 truth p-naive unmarked JAGS

mhbElev 1214 1118 1257 1259

In Section 19B.4.3, we have obtained estimated standard errors around this estimate by the delta
method and a parametric bootstrap, i.e., by two frequentist methods. With Bayesian posterior
inference the posterior SD is the analogous quantity. We find that they are very similar.

 Delta method Parametric Bootstrap Posterior SD

 0.05351 0.05476 0.05514

For a final comparison between a detection-naïve analysis, and a frequentist and a Bayesian
analysis using the N-mixture model, we look at the estimates of the total population size.

 truth naive unmarked JAGS

 908 534 979 965

We emphasize that many of these comparisons are correct in showing general patterns. For
instance, detection-naïve analyses will always underestimate abundance when 1p , while

frequentist and Bayesian inferences for the N-mixture model will usually lead to estimates that
are numerically very similar. However, we have inspected only a single data set and hence, to
make more general statements of this kind, you would have to conduct simulations with many
data sets (e.g., 20, 100 or 1000). Typically, in such a simulation-based assessment, you would also
vary many of the settings of the data simulation, such as sample sizes and parameter values.

Continuing, we will now use the JAGS results to plot spatial predictions of the expected
bullfinch abundance (i.e., lambda) in Switzerland, to yield a species distribution map. As for the

analysis of the model using maximum likelihood from unmarked, we will plot both point
estimates and uncertainty assessments (posterior SD's and 95% credible intervals), for a Bayesian
variant of the Holy Grail for our simulated Swiss bullfinches (Fig. 19B.15). Note also our continued
use of the median instead of the mean as a Bayesian point estimator for a skewed posterior.

Point estimates of optimal elevation (in metres)

comp <- cbind('truth' = 1000*opt.elev.true, 'p-naive' = 1000*opt.elev2,

 'unmarked' = 1000*opt.elev.um, 'JAGS' = 1000*out19B.5$mean$opt.elev)

print(comp, 3)

Compare three solutions to the SE of optimum elevation

comp <- c(sqrt(var_elev.opt), SE_opt.elev, out19B.5sdopt.elev)

names(comp) <- c("Delta method", "Parametric Bootstrap", "Posterior SD")

print(comp, 4)

Compare total population size in sampled quadrats to truth

jags_Ntotal <- out19B.5$q50$totalN

comp <- c(truth = true_Ntotal, naive = naive_Ntotal, unmarked =

unm_Ntotal, JAGS = jags_Ntotal)

print(comp, 2)

36

Make predictions for all Switzerland for a prototypical SDM

Prelims

samps <- out19B.5$sims.list # Grab all posterior samples

str(samps) # Look at overview

nsamp <- length(samps$alpha.lam)# Sample size

Create array to hold predictions for all of Switzerland

pred.lam2 <- array(NA, dim = c(nsamp, length(chElev)))

Fill the array using MCMC draws and Swiss elevation data

for(i in 1:nsamp){

 if(i %% 50 == 0) cat(paste("Predicting for MCMC draw", i, "\n"))

 pred.lam2[i,] <- exp(samps$alpha.lam[i] + samps$beta1.lam[i] *

chElevScaled + samps$beta2.lam[i] * chElevScaled^2)

}

Compute posterior medians, sds and 95%CRIs

pm <- apply(pred.lam2, 2, median) # Posterior medians

psd <- apply(pred.lam2, 2, sd) # Posterior sd

lcl <- apply(pred.lam2, 2, function(x) quantile(x, 0.025)) # Lower CRL

ucl <- apply(pred.lam2, 2, function(x) quantile(x, 0.975)) # Upper CRL

The Bayesian version of the Holy Grail (see Chapter 8 in AHM1 book)

(Fig. 19B.15)

mapPalette1 <- colorRampPalette(c("grey", "yellow", "orange", "red"))

par(mfrow = c(2, 2), mar = c(3,4,4,6), cex.main = 1.5)

r1 <- rasterFromXYZ(data.frame(x = ch$x, y = ch$y, z = pm))

plot(r1, col = mapPalette1(100), axes = FALSE, box = FALSE,

 main = "Swiss SDM for the bullfinch\n(estimated true abundance,

lambda)", zlim = c(0, 15))

r2 <- rasterFromXYZ(data.frame(x = ch$x, y = ch$y, z = psd))

plot(r2, col = mapPalette1(100), axes = FALSE, box = FALSE,

 main = "Uncertainty (posterior sd of lambda)", zlim = c(0, 2.5))

r3 <- rasterFromXYZ(data.frame(x = ch$x, y = ch$y, z = lcl))

plot(r3, col = mapPalette1(100), axes = FALSE, box = FALSE,

 main = "Uncertainty (Lower credible limit)", zlim = c(0, 15))

r4 <- rasterFromXYZ(data.frame(x = ch$x, y = ch$y, z = ucl))

plot(r4, col = mapPalette1(100), axes = FALSE, box = FALSE,

 main = "Uncertainty (Upper credible limit)", zlim = c(0, 15))

37

Fig. 19B.16: The Bayesian Holy Grail for simulated Swiss bullfinches: An abundance-based species
distribution map of Swiss bullfinches (top left), along with three maps that depict the uncertainty
in these estimates: posterior SD of the 1km2-wise predictions (top right), and the lower and upper
95% credible limits of these predictions (bottom left and right, respectively).

For these maps, we have summarized the prediction matrix pred.lam2 by kilometric pixel. In
contrast, to obtain the posterior distribution of the Swiss national population size of simulated
bullfinches, we summarize the same matrix by MCMC sample. This gives us the posterior
distribution of the national population size of simulated bullfinches in Switzerland (Fig. 19B.17).
From this we can obtain the usual summaries for a point estimate and uncertainty assessments.
We find that there are about 129,000 bullfinch territories in Switzerland, with a posterior sd of
roughly 25,000 and a 95% credible interval of about 103,000–197 ,000.

38

> (pm_Ntot <- median(post_Ntot))

[1] 128649.3

> (psd_Ntot <- sd(post_Ntot))

[1] 25388.22

> (CRI_Ntot <- quantile(post_Ntot, c(0.025, 0.975)))

 2.5% 97.5%

103239.3 196986.5

Fig. 19B.17: Posterior distribution of the total population size of simulated bullfinches in
Switzerland. This is such a glorious result that we choose a golden color for the bars. Red and blue
lines show the true value in the simulated data and the posterior median, respectively.

Compute estimated Swiss population size, with posterior sd and CRI

post_Ntot <- apply(pred.lam2, 1, sum)

Plot full posterior distribution (Fig. 19B.17)

hist(post_Ntot, breaks = 40, col = "gold", main = "Swiss national

population size of simulated bullfinches (Posterior distribution)", xlab

= "Number of territories", ylab = "Density", freq = FALSE)

abline(v = Ntot_true, col = "red", lwd = 4)

abline(v = median(post_Ntot), col = "blue", lwd = 4, lty = 2)

Compute median, sd and CRI

(pm_Ntot <- median(post_Ntot))

(psd_Ntot <- sd(post_Ntot))

(CRI_Ntot <- quantile(post_Ntot, c(0.025, 0.975)))

39

19B.6 Bayesian analysis with NIMBLE

As always, we can use the JAGS model with virtually no change to fit the same model in NIMBLE.
However, we drop the part in the model that computes the posterior predictive check. Initial runs
suggested we needed to run longer Markov chains for NIMBLE in this case, so we choose MCMC
settings about twice as heavy as for JAGS above.

Here is the model written in the BUGS language for NIMBLE.

Bundle and summarize data

elev2 <- mhbElevScaled^2 # squared elevation

str(dataList <- list(C=C, elev = mhbElevScaled, elev2 = elev2,

 nSites = nSites, nVisits = nVisits))

Write NIMBLE model file

model19B.6 <- nimbleCode({

Priors

mean.lam ~ dunif(0, 1)

alpha.lam <- log(mean.lam)

beta1.lam ~ dnorm(0, 0.001)

beta2.lam ~ dnorm(0, 0.001)

mean.p ~ dunif(0, 1)

alpha.p <- logit(mean.p)

beta.p ~ dnorm(0, 0.001)

Likelihood

Biological model for true abundance

for (i in 1:nSites) { # Loop over sites

 N[i] ~ dpois(lambda[i])

 log(lambda[i]) <- alpha.lam + beta1.lam * elev[i] + beta2.lam *

elev2[i]

}

Observation model for replicated counts

for (i in 1:nSites) { # Loop over sites

 for (t in 1:nVisits) { # Loop over all n observations

 C[i,t] ~ dbin(p[i,t], N[i])

 logit(p[i,t]) <- alpha.p + beta.p * elev[i]

 }

}

Derived quantities

totalN <- sum(N[1:nSites]) # Estimate total pop. size across all sites

opt.elev <- -beta1.lam / (2 * beta2.lam) # Optimum elevation

})

40

19B.7 Bayesian analysis with Stan

To fit the model in Stan we unfortunately cannot use the same intuitive, hierarchical construction
of the likelihood as for JAGS and NIMBLE. This is due to the inability of the software to directly
deal with discrete random effects, i.e., the latent abundance states of N. Hence, as for the
occupancy model in Chapter 19, we need to work with the marginal, or integrated, likelihood,
where the latent abundance states are eliminated from the likelihood by summation (Berger et
al., 1999; Joseph 2020; Yackulic et al., 2020). This makes the implementation of the model harder
to understand for nonstatisticians, but it may be still worthwhile to learn this, since
marginalization in hierarchical model may speed up computations in general (Yackulic et al.,

2020). We note also that both unmarked (Section 19B.4) and ubms (see next section)
implement the N-mixture model in this manner, although this is 'under the hood', and so you
don't get to see this.

To start building the integrated likelihood, here’s the likelihood for one site i for a
particular value of the true abundance 𝑁𝑖.

𝐿𝑖(𝜆𝑖, 𝒑𝑖|𝒚𝑖 , 𝑇) = dpois(𝑁𝑖|𝜆𝑖) ∙ ∏ dbinom(𝑦𝑖,𝑡|𝑁𝑖, 𝑝𝑖,𝑡)

𝑇

𝑡=1

Inits

Nst <- apply(C, 1, max) + 1

inits <- function(){list(N = Nst, mean.lam=runif(1, 0, 1),

beta1.lam=rnorm(1, 0, 1), beta2.lam=rnorm(1, 0, 1), mean.p=runif(1),

beta.p=rnorm(1, 0, 1))}

Parameters monitored: same as before

params <- c("alpha.lam", "beta1.lam", "beta2.lam", "alpha.p", "beta.p",

"mean.lam", "mean.p", "totalN", "opt.elev", "N")

params <- c("alpha.lam", "beta1.lam", "beta2.lam", "alpha.p", "beta.p",

"mean.lam", "mean.p", "totalN", "opt.elev")

MCMC settings

Number of samples returned is floor((niter-nburnin)/thin)

ni <- 150000 ; nb <- 50000 ; nc <- 4 ; nt <- 100 # Like JAGS

ni <- 300000 ; nb <- 200000 ; nc <- 4 ; nt <- 200 # safer

Call NIMBLE (ART 38 min), check convergence and summarize posteriors

system.time(out19B.6 <-

 nimbleMCMC(code = model19B.6,

 constants = dataList,

 inits = inits, monitors = params,

 nburnin = nb, niter = ni, thin = nt, nchains = nc,

 samplesAsCodaMCMC = TRUE))

par(mfrow=c(2,2), ask = TRUE); coda::traceplot(out19B.6)

nsum <- nimble_summary(out19B.6, params)

print(as.matrix(nsum), 4) # summary, not shown

nimble_est <- nsum[1:5,1] # Save estimates

nimble_Ntotal <- nsum[8,4] # Posterior median

41

The likelihood for mean abundance 𝜆𝑖 and the vector of survey-specific detection probabilities 𝒑𝑖,
given the vector of T repeated counts 𝒚𝑖, is the product of the likelihoods of the Poisson
abundance and binomial detection submodels.

Since we don’t know the value of the true abundance 𝑁𝑖, we have to integrate over all
possible values that it can take. Since 𝑁𝑖 is discrete, we can do this by defining the set of all
possible values for 𝑁𝑖 and calculating the likelihood above for each value, then summing up these
likelihoods (i.e. we do integration by summation). So how can we define the set of all possible 𝑁𝑖?
The minimum value in this set should be the maximum observed count in 𝒚𝑖, since under the
assumption of no false positives we know there are at least that many animals present. The
maximum should in principle be infinity, but in practice we will approximate that by a large
number. That is, we choose some value well above the largest realistic value, exactly as with the
choice of K in the unmarked section above. Here we’ll choose K to be the maximum count + 20.
This results in the following likelihood for site i:

𝐿𝑖(𝜆𝑖, 𝒑𝑖|𝒚𝑖 , 𝑇) = ∑ (dpois(𝑘|𝜆𝑖) ∙ ∏ dbinom(𝑦𝑖,𝑡|𝑘, 𝑝𝑖,𝑡)

𝑇

𝑡=1

)

𝐾

𝑘=max (𝒚𝑖)

The total likelihood for all sites is the product of all the site-specific likelihoods 𝐿𝑖, or more
commonly, the sum of the log-likelihoods.

Our dataset for Stan is similar to the one for JAGS, but we also add the summation limits
for evaluating the integrals in the likelihood contribution from each site, which we call Kmin
(lower) and K (upper).

List of 7

 $ C : int [1:267, 1:3] 0 0 1 0 1 0 0 0 1 0 ...

 $ nSites : num 267

 $ nVisits: num 3

 $ elev : num [1:267] 0.219 0.231 0.253 0.311 0.311 ...

 $ elev2 : num [1:267] 0.0481 0.0532 0.064 0.0965 0.097 ...

 $ Kmin : int [1:267] 0 0 1 0 1 0 0 0 1 0 ...

 $ K : num 28

Most of the Stan model looks similar to the JAGS code. At the end of the model section, we
translate the likelihood math above into Stan code, calculate the total log-likelihood across sites,
and supply the result to the special Stan target as in Chapter 19.

Bundle and summarize data

Build data list (a bit different from JAGS/Nimble)

Minimum and maximum possible abundance at each site

Kmin <- maxC # Maximum count at each site

K = max(C) + 20 # Over max count plus some 'buffer'

dataList <- list(C=C, nSites=nSites, nVisits=nVisits,

 elev=mhbElevScaled, elev2= mhbElevScaled ^2, Kmin=Kmin, K=K)

str(dataList)

42

Write Stan model

cat(file="model19B_7.stan", "

data{

 int nSites;

 int nVisits;

 int C[nSites, nVisits];

 vector[nSites] elev;

 vector[nSites] elev2;

 int K;

 int Kmin[nSites];

}

parameters{

 real alpha_lam;

 real beta1_lam;

 real beta2_lam;

 real alpha_p;

 real beta_p;

}

transformed parameters{

 vector[nSites] log_lambda;

 vector[nSites] logit_p;

 for (i in 1:nSites){

 log_lambda[i] = alpha_lam + beta1_lam * elev[i] + beta2_lam *

elev2[i];

 logit_p[i] = alpha_p + beta_p * elev[i];

 }

}

model{

 vector[nSites] lik; //likelihood for each site

 //Priors

 alpha_lam ~ normal(0, 2);

 beta1_lam ~ normal(0, 100);

 beta2_lam ~ normal(0, 100);

 alpha_p ~ normal(0, 10);

 beta_p ~ normal(0, 100);

 for (i in 1:nSites){

 lik[i] = 0;

 for (k in Kmin[i]:K){

 lik[i] += exp(poisson_log_lpmf(k | log_lambda[i]) +

 binomial_logit_lpmf(C[i,1:nVisits] | k,

logit_p[i]));

 }

 target += log(lik[i]);

 }

}

generated quantities {

 real opt_elev;

 opt_elev = -beta1_lam / (2 * beta2_lam);

}

")

43

At least in our implementation of the model, Stan takes longer than JAGS to run, but it is faster
than our implementation of it in NIMBLE. On the other hand, looking at the trace plots (not shown
here), we see that the posterior samples are much less correlated than those produced by JAGS or
NIMBLE. That is, they effectively contain more information. Thus, the fairest and most meaningful
comparison of the efficiency of an MCMC algorithm is not the time it takes for producing a certain
number of MCMC samples, but rather the effective sample size per unit of time (Ponisio et al.,
2020). And if we computed this, it might well be that Stan is the "fastest" among the three
Bayesian engines for our example.

As before (e.g., in Chapter 19), when we fit a hierarchical model with an integrated
likelihood, we must do additional calculations to recover estimates of the random effects. Below,
we show one approach to calculating an estimate of the total abundance using the Stan output.
Similar calculations will be necessary for this for the DIY-MLE and TMB engines below.

Parameters to estimate

params <- c("alpha_lam", "beta1_lam", "beta2_lam", "alpha_p",

 "beta_p", "opt_elev")

HMC settings

ni <- 1500 ; nb <- 500 ; nc <- 4 ; nt <- 1

Call STAN (ART 18 min), assess convergence and print results table

options(mc.cores = parallel::detectCores()-1) # Run Stan in parallel

system.time(

out19B.7 <- stan(file = "model19B_7.stan", data = dataList,

 pars = params, warmup = nb, iter = ni, chains = nc, thin = nt))

rstan::traceplot(out19B.7) # not shown, but see next paragraph

print(out19B.7, dig = 3) # not shown

stan_est <- summary(out19B.7)$summary[1:5,1] # Save estimates

Get posterior of sumN

Get posterior of parameters (beta vector)

stan_beta_post <- as.matrix(out19B.7)[,1:5]

Function that takes posterior of beta and generates posterior of sumN

get_post_sumN <- function(Beta_samples, K){

 nsims <- nrow(Beta_samples)

 sumN_sims <- rep(NA, nsims)

 for (i in 1:nsims){

 beta <- Beta_samples[i,]

 lambda <- exp(beta[1] + beta[2] * mhbElevScaled + beta[3] *

mhbElevScaled^2)

 p <- plogis(beta[4] + beta[5] * mhbElevScaled)

 N <- rep(NA, nSites)

 for (n in 1:nSites){

 Kvals <- max(C[n,]):K

 Kprob <- rep(NA, length(Kvals))

44

Fig. 19B.18: Posterior distribution of the total number of simulated Swiss bullfinches living in the
267 sample quadrats. Red and blue lines show the true value and the posterior median,
respectively.

 for (k in 1:length(Kvals)){

 pLam <- dpois(Kvals[k], lambda[n])

 pP <- 1

 for (j in 1:nVisits){

 pP <- pP * dbinom(C[n,j], Kvals[k], p[n])

 }

 Kprob[k] <- pLam * pP

 }

 Kprob <- Kprob / sum(Kprob)

 N[n] <- sample(Kvals, 1, prob=Kprob)

 }

 sumN_sims[i] <- sum(N)

 }

 sumN_sims

}

Bootstrap that function to get CIs as well and produce plot

system.time(# ART 210 sec

 post_sumN <- get_post_sumN(stan_beta_post, K=30)

)

stan_Ntotal <- median(post_sumN)

Draw figure (Fig. 19B.18)

hist(post_sumN, main="Posterior of sumN from Stan", breaks = 40)

abline(v=stan_Ntotal, col='blue', lwd = 5)

abline(v=true_Ntotal, col='red', lwd = 5)

legend("topright", lty=1, col=c('red','blue'),

legend=c('truth','estimate'), lwd = 5, cex = 1.2, bty = 'n')

45

19B.8 Bayesian analysis with canned functions in the R package ubms

We encountered the package ubms already in Chapter 19. We have seen that it is a wrapper for

Stan and has virtually the same input and syntax as unmarked. Therefore, if you know
unmarked, then the transition to ubms will be extremely easy. We note that fitting this N-
mixture model in ubms, using Stan under the hood, takes much longer than what we might
expect based for instance on our experience with occupancy models (Chapter 19).

unmarkedFrame Object

267 sites

Maximum number of observations per site: 3

Mean number of observations per site: 3

Sites with at least one detection: 186

Tabulation of y observations:

 0 1 2 3 4 5 6 7 8

322 185 120 71 39 39 11 8 6

Site-level covariates:

 elev elev2

 Min. :0.2193 Min. :0.04809

 1st Qu.:0.5827 1st Qu.:0.33958

 Median :1.1165 Median :1.24649

 Mean :1.1875 Mean :1.82244

 3rd Qu.:1.8187 3rd Qu.:3.30749

 Max. :2.7807 Max. :7.73212

Of course, this is exactly the same data set, and summary, as we had for unmarked. To fit the
model, the syntax is almost exactly the same as that in unmarked when using function
pcount().

Also the output looks almost exactly as the output from unmarked. Note that instead of the AIC,
we are given the approximate loo-CV model selection criterion developed by Vehtari et al. (2017),
as implemented in the loo package (see also Section 18.6).

library(ubms)

Load unmarked, format data and summarize

Produces same as for unmarked in Section 19B.4 of course

library(unmarked)

summary(umf <- unmarkedFramePCount(y = C,

 siteCovs = data.frame(elev=mhbElevScaled, elev2=mhbElevScaled^2)))

Fit the model in ubms in parallel (ART 7 min)

options(mc.cores=4) # number of parallel cores to use

system.time(

 out19B.8 <- stan_pcount(~elev ~ elev + elev2, umf, chains=4))

out19B.8

ubms_est <- coef(out19B.8) # Save estimates

https://rdrr.io/r/base/options.html
https://kenkellner.com/ubms/reference/stan_occu.html

46

Call:

stan_pcount(formula = ~elev ~ elev + elev2, data = umf, chains = 4)

Abundance (log-scale):

 Estimate SD 2.5% 97.5% n_eff Rhat

(Intercept) -3.37 0.288 -3.95 -2.83 1134 1.00

elev 8.85 0.565 7.74 10.00 954 1.00

elev2 -3.50 0.301 -4.09 -2.89 867 1.01

Detection (logit-scale):

 Estimate SD 2.5% 97.5% n_eff Rhat

(Intercept) 2.17 0.344 1.52 2.88 1104 1

elev -2.25 0.417 -3.14 -1.50 1106 1

LOOIC: 1788.418

Runtime: 5.944 min

We make our usual comparison of all the engines that we used so far in this chapter to fit the
model to the simulated bullfinch data. We see that ubms is a bit off the remainder of the engines,
but in fact is closer to the truth than the others. The differences are likely primarily due to ubms
using by default a different set of priors than what we specified in the other engines. These priors
can be changed but we’ll leave this as an exercise for you.

 truth unmarked JAGS NIMBLE Stan ubms

alpha.lam -3.0 -3.55 -3.50 -3.46 -3.48 -3.37

beta1.lam 8.5 9.20 9.13 9.06 9.06 8.85

beta2.lam -3.5 -3.66 -3.63 -3.62 -3.57 -3.50

alpha.p 2.0 2.18 2.13 2.13 2.23 2.17

beta.p -2.0 -2.25 -2.21 -2.18 -2.32 -2.25

We can obtain an estimate of the total population size across quadrats using the
posterior_predict function provided by ubms, which yields posteriors of the latent
abundance at each site.

 truth naïve unmarked JAGS NIMBLE Stan ubms

 908 534 979 965 981 998 973

Compare estimates with truth

comp <- cbind(truth = truth, unmarked = unm_est, JAGS = jags_est,

 NIMBLE = nimble_est, Stan = stan_est, ubms = ubms_est)

print(comp, 3)

Compare total population size to truth

postN_ubms <- posterior_predict(out19B.8, "z") # Get posterior of latent

abundance

ubms_NtotalX <- apply(postN_ubms, 1, sum) # Calculate sumN for each draw

ubms_Ntotal <- median(ubms_NtotalX)

comp <- c(truth = true_Ntotal, naïve = naive_Ntotal,

 unmarked = unm_Ntotal, JAGS = jags_Ntotal, NIMBLE = nimble_Ntotal,

 Stan = stan_Ntotal, ubms = ubms_Ntotal)

print(comp, 2)

47

19B.9 Do-it-yourself maximum likelihood estimates

Next, our glorious DIY-MLEs. This section will give us a look at what unmarked does under the
hood when fitting this model using maximum likelihood ... or programs MARK (White & Burnham,
1999) or PRESENCE (Hines 2006) for that matter. The underlying likelihood math is the same as
what we presented in section 19B.7 for Stan. Here, we’re just translating the math into R code
instead of Stan code.

We show two variants of the negative log-likelihood function (NLL). The first is faster, but
the second is easier to understand. Our first NLL is from Panel 8.1. in Royle & Dorazio (2008). In
addition to the arguments for the replicated count matrix (C) and the single site-covariate x, the R
function defining the negative log-likelihood has arguments K and nSites and nVisits. The

first is our setting for the upper integration bound K as previously discussed in the unmarked
and Stan sections. The other two arguments are self-explanatory.

Definition of NLL for Binomial N-mixture model for lizard counts

Variant 1 (from Royle & Dorazio, 2008), faster than Variant 2 below

NLL <- function(param, C, x, K, nSites, nVisits){

 alpha.lam <- param[1] # Abundance intercept (log scale)

 beta1.lam <- param[2] # Abundance slope on x

 beta2.lam <- param[3] # Abundance slope on x^2

 alpha.p <- param[4] # Detection intercept (logit scale)

 beta.p <- param[5] # Detection slope on x

 # Covariate model for expected abundance lambda ('GLM 1')

 lambda <- exp(alpha.lam + beta1.lam * x + beta2.lam * x^2)

 # Covariate model for detection probability p ('GLM 2')

 p <- plogis(alpha.p + beta.p*x)

 L <- rep(NA, 3) # Vector for likelihood contribution of each site

 tmp.like <- matrix(NA, nrow = K+1, ncol = nVisits)

 for(i in 1:nSites){

 gN <- dpois(0:K, lambda[i])

 gN <- gN / sum(gN)

 dvec <- C[i,] # Extract counts at site i

 tmp.like[,1] <- dbinom(dvec[1], 0:K, p[i])

 tmp.like[,2] <- dbinom(dvec[2], 0:K, p[i])

 tmp.like[,3] <- dbinom(dvec[3], 0:K, p[i])

 likvec <- apply(tmp.like, 1, prod)

 L[i] <- sum(likvec * gN) # Contribution to L from 1 site

 }

 NLL <- -1 * sum(log(L))

 return(NLL)

}

48

Using one or the other R functions for the NLL in the next block of code yields estimates in 23 or
55 seconds, respectively. Numerically, the solutions are of course identical.

 MLE ASE LCL.95 UCL.95

alpha.lam -3.554 0.3040 -4.150 -2.958

beta1.lam 9.205 0.5937 8.041 10.368

beta2.lam -3.661 0.3197 -4.287 -3.034

alpha.p 2.181 0.3523 1.491 2.871

beta.p -2.252 0.4377 -3.110 -1.394

[1] 1788.085

Variant 2: much slower, but easier to understand than Variant 1

NLL <- function(param, C, x, K, nSites, nVisits){

 alpha.lam <- param[1] # Abundance intercept (log scale)

 beta1.lam <- param[2] # Abundance slope on x

 beta2.lam <- param[3] # Abundance slope on x^2

 alpha.p <- param[4] # Detection intercept (logit scale)

 beta.p <- param[5] # Detection slope on x

 # Covariate model for expected abundance lambda ('GLM 1')

 lambda <- exp(alpha.lam + beta1.lam * x + beta2.lam * x^2)

 # Covariate model for detection probability p ('GLM 2')

 p <- plogis(alpha.p + beta.p*x)

 L <- rep(NA, nSites) # Vector for likelihood contribution of each site

 for(i in 1:nSites){

 pN <- dpois(0:K, lambda[i])

 pY <- rep(1, K+1)

 for (k in 0:K){

 for (j in 1:nVisits){

 pY[k+1] <- pY[k+1] * dbinom(C[i,j], k, p[i])

 }

 }

 L[i] <- sum(pN * pY)

 }

 NLL <- -1 * sum(log(L))

 return(NLL)

}

Minimize that NLL to find MLEs and get SEs (ART 23 or 55 sec)

inits <- c('alpha.lam' = 0, 'beta1.lam' = 0, 'beta2.lam' = 0,

 'alpha.p' = 0, 'beta.lp' = 0)

inits <- rep(0, 5)

names(inits) <- names(truth)

system.time(out19B.9 <- optim(inits, NLL, C = C, x = mhbElevScaled,

 K = max(C) + 100, nSites = nSites, nVisits = 3, hessian=TRUE,

 method = "BFGS", control=list(trace=1, REPORT=2)))

get_MLE(out19B.9, 4)

diy_est <- out19B.9$par # Save estimates

Get AIC: 2 * deviance + 2 * number of parameters

(AIC <- 2 * out19B.9$value + 2 * length(out19B.9$par))

49

We can compare these estimates with those obtained from unmarked as follows (not shown),
and perhaps unsurprisingly, we find them to be identical.

That makes us pretty proud --- this is our first N-mixture model fit with likelihood inference 'by
hand'. We can again use a parametric bootstrap to obtain estimates of the random effects (N) and
of their sum across all 267 sample quadrats, as we did in Section 19B.4.2 and also in the Stan
section above.

The next block of code allows us to plot the empirical posterior distribution of the sum of the local
abundance parameters (the N's) for our DIY-MLEs of the N-mixture model fit to the Swiss
bullfinches.

19B.10 Likelihood analysis with TMB

In TMB we implement the model in the same way as we did in Stan and for our DIY-MLEs, and as it
is implemented under the hood in both unmarked and ubms. That is, we define the marginal, or
integrated, likelihood, wherein the latent states are summed out, and we are left with the
parameters in the model for abundance. Again, we translate the math in section 19B.7, but this
time into TMB code.

We use the same data set as we used for Stan. Note that here (as with Stan) we set the
value of K at the maximum observed count plus 20, rather than adding 100 as does unmarked by
default. We do this just to save time, since for our analysis here this value is sufficient.

Compare with the solutions and AIC from unmarked

summary(out19B.4) # not shown

Get estimate of sum N (ART 50 sec)

library(MASS)

Beta <- out19B.9$par

Sigma <- solve(out19B.9$hessian)

param_samples <- mvrnorm(1000, Beta, Sigma)

system.time(

 post_sumN <- get_post_sumN(param_samples, 30)

)

diy_Ntotal <- median(post_sumN)

Plot posterior of totalN from DIY-MLEs -- not shown

hist(post_sumN, main="Posterior of sumN from DIY MLEs", breaks = 40)

abline(v=median(post_sumN), col='blue', lwd = 5)

abline(v=true_Ntotal, col='red', lwd = 5)

legend("topright", lty=1, col=c('red','blue'),

legend=c('truth','estimate'), lwd = 4, cex = 1, bty = 'n')

Bundle and summarize data

Kmin <- apply(C, 1, max)

K = max(C) + 20

dataList <- list(C=C, nSites=nSites, nVisits=nVisits,

 elev=mhbElevScaled, elev2= mhbElevScaled^2, Kmin=Kmin, K=K)

str(dataList) # not shown

50

Write TMB model file

cat(file="model19B_10.cpp",

"#include <TMB.hpp>

template<class Type>

Type objective_function<Type>::operator() ()

{

 //Describe input data

 DATA_MATRIX(C);

 DATA_INTEGER(nSites);

 DATA_INTEGER(nVisits);

 DATA_VECTOR(elev);

 DATA_VECTOR(elev2);

 DATA_INTEGER(K);

 DATA_IVECTOR(Kmin);

 //Describe parameters

 PARAMETER(alpha_lam);

 PARAMETER(beta1_lam);

 PARAMETER(beta2_lam);

 PARAMETER(alpha_p);

 PARAMETER(beta_p);

 Type loglik = 0.0; //Initialize log-likelihood at 0

 vector<Type> lambda(nSites);

 vector<Type> p(nSites);

 vector<Type> lik(nSites);

 for (int i=0; i<nSites; i++){

 lambda(i) = exp(alpha_lam + beta1_lam * elev(i) + beta2_lam *

elev2(i));

 p(i) = invlogit(alpha_p + beta_p * elev(i));

 lik(i) = 0;

 for (int k=Kmin(i); k<(K+1); k++){

 Type pN = dpois(Type(k), lambda(i), false);

 Type pY = 1;

 for (int j=0; j<nVisits; j++){

 pY *= dbinom(C(i,j), Type(k), p(i), false);

 }

 lik(i) += pN * pY;

 }

 loglik += log(lik(i));

 }

 Type opt_elev = -beta1_lam / (2 * beta2_lam);

 ADREPORT(opt_elev);

 return -loglik;

}

")

51

 Estimate Std. Error LCL.95 UCL.95

alpha_lam -3.554198 0.30396203 -4.149952 -2.958443

beta1_lam 9.204768 0.59371395 8.041110 10.368426

beta2_lam -3.660544 0.31970568 -4.287155 -3.033932

alpha_p 2.181011 0.35227553 1.490564 2.871459

beta_p -2.252471 0.43773936 -3.110424 -1.394517

opt_elev 1.257295 0.05350854 1.152420 1.362170

To get the number of simulated bullfinches in the 267 sample quadrats, we can parametrically
bootstrap the same function that we had used for Stan and for our DIY-MLEs above. This is the
same application of a parametric bootstrap without refitting the model as we had encountered in
Section 19B.4.2. Also note that the number of bootstrap samples chosen in the next code block
will define the smoothness of the posterior distribution of the estimated quantity. Here we will
choose 10,000 to obtain a really nice picture. We use the median yet again as a point estimator.

Compile and load TMB function

compile("model19B_10.cpp")

dyn.load(dynlib("model19B_10"))

Provide dimensions and starting values for parameters

params <- list(alpha_lam = 0, beta1_lam = 0, beta2_lam = 0,

 alpha_p = 0, beta_p = 0)

Create TMB object

out19B.10 <- MakeADFun(data = dataList, parameters = params,

 DLL = "model19B_10", silent=TRUE)

Optimize TMB object and print results

starts <- rep(0, 5)

opt <- optim(starts, fn = out19B.10$fn, gr = out19B.10$gr,

 method = "BFGS", hessian = TRUE)

(tsum <- tmb_summary(out19B.10))

tmb_est <- opt$par # Save estimates

Get estimate of sum N from TMB solutions and then plot

bootstrap.n <- 10000 # Choose how many samples from MVN to draw

Beta <- tmb_est

Sigma <- solve(opt$hessian)

param_samples <- mvrnorm(bootstrap.n, Beta, Sigma)

system.time(

 post_sumN <- get_post_sumN(param_samples, 30) # ART 9 min

)

tmb_Ntotal <- median(post_sumN)

Plot (not shown)

hist(post_sumN, main="Posterior of sum(N) from TMB", breaks=50)

abline(v=true_Ntotal, col='red', lwd = 5)

abline(v=post_sumN, col='blue', lwd = 5)

legend('topright', col=c('red','blue'), lty=1, lwd = 4,

legend=c('truth','estimate (median)'), bty = 'n')

52

19B.11 Comparison of the estimates

Finally, our official grand comparison of the regression parameters in both submodels of the
binomial N-mixture model. Remember that we have solutions based on maximum likelihood

(unmarked, DIY and TMB) and on Bayesian posterior inference (JAGS, NIMBLE, Stan and ubms).

 truth unmarked JAGS NIMBLE Stan ubms DIY TMB

alpha.lam -3.0 -3.554 -3.498 -3.458 -3.483 -3.375 -3.554 -3.554

beta1.lam 8.5 9.205 9.129 9.056 9.061 8.852 9.205 9.205

beta2.lam -3.5 -3.661 -3.635 -3.622 -3.574 -3.500 -3.661 -3.661

alpha.p 2.0 2.181 2.127 2.127 2.227 2.166 2.181 2.181

beta.p -2.0 -2.252 -2.212 -2.180 -2.324 -2.246 -2.252 -2.252

… and the comparison for the total population size within the 267 surveyed quadrats.

 truth naive unmarked JAGS NIMBLE Stan

 908 534 979 965 981 998

 ubms DIY TMB

 973 975 978

Overall, we find what we have almost always found in this comparison throughout the book: for
practical purposes, most estimates are numerically identical.

19B.12 Summary and outlook

Chapter 19 in the ASM book and this chapter 19B feature two special types of species distribution
models (SDMs), which include an explicit submodel for the measurement error in
presence/absence and abundance data, respectively. After the occupancy model for
detection/nondetection data of Chapter 19, we have now presented the other foundational
hierarchical model for distribution and abundance: the binomial N-mixture model of Royle
(2004a) for count data. We have showcased one of the simplest possible examples of this model:
a static, or "single-season", model that assumes closed populations at every surveyed site over the
duration of all repeated surveys. The closure assumption combined with the repeated-measures
design enables one to separately estimate the state model for latent abundance N and the
observation model, which is governed by the detection probability parameter p.

We have illustrated one of the main strengths of this type of hierarchical model: that we
can separately estimate effects of a single covariate on both the state and on the observation

Compare results with truth

comp <- cbind(cbind(truth = truth, unmarked = unm_est, JAGS = jags_est,

 NIMBLE = nimble_est, Stan = stan_est, ubms = ubms_est,

 DIY = diy_est, TMB = tmb_est))

print(comp, 4)

Compare total population size to truth

comp <- c(truth = true_Ntotal, naive = naive_Ntotal,

 unmarked = unm_Ntotal, JAGS = jags_Ntotal, NIMBLE = nimble_Ntotal,

 Stan = stan_Ntotal, ubms = ubms_Ntotal, DIY = diy_Ntotal,

 TMB = tmb_Ntotal)

print(comp, 2)

53

model (Kéry 2008). In our simulated example with bullfinch counts from the Swiss monitoring of
common breeding birds (MHB; Schmid et al., 2004), site elevation affected both abundance and
detection. A traditional species distribution model is unable to tease apart the two processes that
underlie the observed counts; it underestimated abundance and yielded a biased assessment of
the elevation at which bullfinch abundance is greatest. In contrast, the N-mixture model led to
unbiased estimates of abundance and of the optimal elevation, at least in our best-case scenario,
where the data-generation and the data-analysis models matched exactly.

Comparison of the estimates among our model-fitting engines has shown the typical
numerical similarity that we have come to expect by now. Admittedly, this may not always be so,
e.g., when sample sizes are small, priors are informative, or with skewed posterior distributions.
However, we think that this is very comforting and provides support for our belief that ecologists
should be eclectic in their choice of inference framework for a statistical model and should
understand both likelihood and Bayesian methods.

As with the occupancy model in Chapter 19, we have used functions in two specialized

species distribution modeling packages: unmarked (Fiske & Chandler, 2011; Kellner et al., 2023)
and ubms (Kellner et al., 2022). Both contain fitting functions and much additional functionality
for a wide range of SDMs which accommodate and therefore correct for false-negative, and in

some cases false-positive, measurement errors. While unmarked uses maximum likelihood,
ubms is a wrapper for Stan and thus uses Bayesian posterior inference. Both enable the user to
specify random effects (e.g., for regions or for observers), but the treatment of random effects is
arguably smoother with Bayesian inference than with maximum likelihood. For example, ubms
also contains spatial modeling functions by use of restricted spatial regression, or RSR, a similar
model for residual spatial autocorrelation as the widely used conditionally autoregressive (CAR)
model (Johnson et al., 2013). A wide range of occupancy and N-mixture models can also be fit

using the new R packages spOccupancy and spAbundance (Doser et al., 2022, 2024), which
provide Bayesian posterior inference for models for single or multiple species, with or without
species interactions, and for spatial or spatiotemporal settings, among others.

We have illustrated two further important topics in this chapter. One is spatial prediction,
and the other is uncertainty assessment for functions of parameters, or derived quantities, using
two frequentist methods: the delta method and the parametric bootstrap.

Prediction means to compute the expected values of the response, or more generally of a
parameter, as a function of some covariate in the model, as we vary the value of that covariate.
Prediction is an important part of modeling and one that we have illustrated throughout the book,
e.g., in Chapters 5, 7, 8, 9, and 13. Making predictions from a statistical model serves two
important goals: presenting the results of an analysis, typically in a figure, and understanding
what the model is telling us in the first place. In very simple models, we can often understand the
message of the model by simply inspecting the parameter estimates and their sign. For more
complex models, e.g., with interactions, non-linearity or other complications, this may become
hard or impossible. In those cases, making predictions and plotting them against the covariates
may be our main way to understand what the model is telling us.

In this chapter, we have made extensive use of spatial predictions, which we can get from
any regression model with spatially indexed covariates. Notably, any such model can be used as a
species distribution model by simply projecting the estimated regression relationships into
geographic space, using for prediction at each site (or quadrat, pixel) the actual values of the
covariates there (Royle et al., 2005). In our case, working with simulated data for Swiss
bullfinches, we have produced abundance-based species distribution maps which depict the
expected abundance of the species at the 1 km2 scale for the entire country. Importantly, we have
also produced maps of the associated estimation uncertainty, e.g., in the form of standard errors
or posterior standard deviations of these predictions, or by the lower and upper limits of

54

confidence or credible intervals. Finally, we have seen how, under an assumption of
independence of the sites, it is trivially easy to obtain national population size estimates by simply
adding up the predicted values over all sites. Obviously, regional totals could be obtained just as
easily, by adding up the predictions for sites not nationwide, but only over specific regions of a
country.

Bayesians use a single "method", the posterior distribution, to produce both point
estimates and uncertainty assessments for all parameters in a model. We have seen in Chapter 2
that when using maximum likelihood, we are not so lucky, but instead use the likelihood function
for parameter estimation, and then a variety of methods exist to come up with uncertainty
assessments for these estimates. We have illustrated two of these methods for the aim of
obtaining the standard error of a function of the basic parameters in the model: the delta method
and a simple parametric bootstrap (see also Section 2.5). These are widely used in frequentist
software such as unmarked, which uses the delta method for variance estimation of predictions
in many model fitting functions, while some newer functions use the parametric bootstrap
instead, which is based on the assumed multivariate normality of the estimates. Seeing both
methods in action will arguably help you get more comfortable with software that uses this
technology under the hood.

Returning to the binomial mixture model, we make an important observation about the
abundance parameter. The same observation applies in an analogous way for the occupancy
parameter in the occupancy model in Chapter 19 of the book. Even when correcting for imperfect

detection, the interpretation of the abundance parameter iN may not necessarily be what we

might want it to be: the number of individuals that permanently reside within a defined plot of
land. The reason is that animals may move around, so the effective sampling area will often be

greater than the nominal sampling area. Hence, the estimate of iN will often refer to a larger area

and we don’t exactly know the size of it. The magnitude of the discrepancy between the nominal
and the effective sampling area depends on two things: the typical scale of the movement of the
study species and the time frame of the repeated surveys. The discrepancy will be greater for

greater dispersal and a longer total survey period. The estimate of iN then refers to the number

of animals that ever use the area over the entire during of the sampling. The same reasoning goes
for the interpretation of the occupancy parameter in occupancy models in the face of temporary
emigration (MacKenzie et al. 2018).

If we want to circumvent this difficulty, other sampling protocols and associated modeling
frameworks must be used, such as distance sampling (Buckland et al. 2001, 2015) or spatial
capture-recapture methods (Efford 2004; Borchers & Efford, 2008; Royle & Dorazio 2008; Royle &
Young 2008; Efford et al., 2009; Royle et al., 2014). We note also that adding up spatial
predictions of the expected abundance to obtain estimates of total population size, as we have
done multiple times in this chapter, is only valid under the assumption of independence of sites.
Thus, in so doing we assume that the effective sampling area associated with a site is not greater
than 1 km2 and does not overlap with that of its neighbors (see Section 6.10 in Kéry & Royle,
2016).

This issue is not unique to the binomial mixture (or the occupancy) model; rather, it is
important for most models that ignore imperfect detection or other kinds of species distribution
measurement errors. Thus, a binomial mixture model solves the problem of imperfect detection
when interpreting (i.e., analyzing) count data. But the issue of how exactly abundance should be
interpreted (e.g., whether as a density for a known area) may remain a challenge.

Binomial mixture models offer great opportunities for improved estimation of animal or
plant abundance, by correcting for imperfect detection probability (p). Essentially, the model is

simply a generalized version of a Poisson regression model that accommodates imperfect

55

detection; when 1p , we are back to a classical Poisson generalized linear model (see Chapters

11–13). However, it is far more complex than a simpler Poisson GLM and also more complex than
a conventional hierarchical Poisson GLMM (Chapter 14) and fitting it in practice may be
challenging sometimes (Goldstein & de Valpine, 2022).

There are many extensions to the basic N-mixture model that we have shown here. These
include different observation protocols (e.g., Wyatt 2002; Royle 2004b; Royle et al., 2004; Strebel
et al., 2021), multiple species (Yamaura et al., 2012), open populations (Dail & Madsen 2011), and
multiple classes of individuals, such as young and adult (Zipkin et al., 2014). Most are synthesized
in the two Applied Hierarchical Modeling, or AHM, books; see Kéry & Royle (2016, 2021).

References

Andrewartha, H.G. & Birch, L.C. 1954. The distribution and abundance of animals. University of
Chicago Press, Chicago.

Barker, R. J., Schofield, M. R., Link, W. A., & Sauer, J. R. (2018). On the reliability of N-mixture
models for count data. Biometrics, 74, 369–377.

Berger, J.O., Liseo, B., & Wolpert, R.K. 1999. Integrated likelihood methods for eliminating
nuisance parameters. Statistical Science, 14, 1–22.

Bibby, C.J., Burgess, N.D., Hill, D.A. & Mustoe, S. 2000. Bird Census Techniques, Second Edition,
Academic Press.

Borchers, D.L. & Efford, M.G. 2008. Spatially explicit maximum likelihood methods for capture-
recapture studies. Biometrics, 64, 377–385.

Buckland, S.T., Anderson, D.R., Burnham, K.P., Laake, J.L., Borchers, D.L. & Thomas, L. 2001.
Introduction to distance sampling. Oxford University Press, Oxford.

Buckland, S.T., Rexstad, E.A., Marques, T.A., & Oedekoven, C.S. 2015. Distance sampling: methods
and applications. Springer, Cham, Switzerland.

Couturier, T., Cheylan, M., Bertolero, A., Astruc, G., & Besnard, A. 2013. Estimating abundance and
population trends when detection is low and highly variable: A comparison of three methods
for the Hermann's tortoise. Journal of Wildlife Management, 77, 454–462.

Dennis, E.B., Morgan, B.J., Ridout, M.S. (2015). Computational aspects of N-mixture models.
Biometrics, 71, 237–246.

Dail, D. & Madsen, L. 2011. Models for estimating abundance from repeated counts of an open
population. Biometrics, 67, 577–587.

Dodd, C.K. & Dorazio, R.M. 2004. Using counts to simultaneously estimate abundance and
detection probabilities in salamander surveys. Herpetologica, 60, 468–478.

Dorazio, R.M., 2007. On the choice of statistical models for estimating occurrence and extinction
from animal surveys. Ecology, 88, 2773–2782.

Doser, J.W., Finley, A.O., Kéry, M., Zipkin, E.F. 2022. spOccupancy: An R package for single
species, multispecies, and integrated occupancy models. Methods in Ecology and Evolution,
13, 1670–1678.

Doser, J.W., Finley, A.O., Kéry, M., Zipkin, E.F. 2024. spAbundance: An R package for single-
species and multi-species spatially-explicit abundance models. Methods in Ecology and
Evolution, 15, 1024–1033.

Duarte, A., Adams, M. J., & Peterson, J. T. 2018. Fitting N-mixture models to count data with
unmodeled heterogeneity: Bias, diagnostics, and alternative approaches. Ecological
Modelling, 374, 51–59.

56

Efford, M. 2004. Density estimation in live-trapping studies. Oikos, 106, 598–610.
Efford, M.G., Borchers, D.L. & Byrom, A.E. 2009. Density estimation by spatially explicit capture-

recapture: likelihood-based methods. pp. 255–269 in D.L. Thomson, E.G. Cooch, M.J. Conroy
(eds.) Modeling demographic processes in marked populations. Springer, New York.

Fiske, I. & Chandler, R. 2011. unmarked: an R package for fitting hierarchical models of wildlife
occurrence and abundance. Journal of Statistical Software, 43, 1–23.

Goldstein, B.R., & de Valpine, P. 2022. Comparing N-mixture models and GLMMs for relative
abundance estimation in a citizen science dataset. Scientific Reports, 12, 12276.

Hines, J.E. 2006. PRESENCE 3.1 Software to estimate patch occupancy and related parameters.
http://www. mbr-pwrc. usgs.gov/software/presence.html.

Johnson, D.S., Conn, P.B., Hooten, M.B., Ray, J.C. & Pond, B.A. 2013. Spatial occupancy models for
large data sets. Ecology, 94, 801–808.

Joseph, L.N., Elkin, C., Martin, T.G. & Possingham, H. 2009. Modeling abundance using N-mixture
models: the importance of considering ecological mechanisms. Ecological Applications, 19,
631–642.

Joseph, M.B., 2020b. A step-by-step guide to marginalizing over discrete parameters for ecologists
using Stan. Accessed on 16 November 2023. https://mbjoseph.github.io/posts/2020-04-28-
a-step-by-step-guide-to-marginalizing-over-discrete-parameters-for-ecologists-using-stan/.

Kellner, K.F., N.L. Fowler, T.R. Petroelje, T.M. Kautz, D.E. Beyer Jr., J.L. Belant. 2022 A. ubms: An R
package for fitting hierarchical occupancy and N-mixture abundance models in a Bayesian
framework. Methods in Ecology and Evolution, 13, 577–584.

Kellner, K.F., Smith, A.D., Royle, J.A., Kéry, M., Belant, J.L., Chandler, R.B. 2023. The unmarked R
package: Twelve years of advances in occurrence and abundance modeling in ecology.
Methods in Ecology and Evolution, 14, 1408–1415.

Kéry, M. 2010. Introduction to WinBUGS for Ecologists. - A Bayesian approach to regression,
ANOVA, mixed models and related analyses. Academic Press, Burlington.

Kéry, M., 2008. Estimating abundance from bird counts: binomial mixture models uncover
complex covariate relationships. The Auk, 125, 336–345.

Kéry, M. 2018. Identifiability in N-mixture models: A large-scale screening test with bird data.
Ecology, 99, 281–288.

Kéry, M., Royle, J.A. & Schmid, H. 2005. Modeling avian abundance from replicated counts using
binomial mixture models. Ecological Applications, 15, 1450–1461.

Kéry, M. & Royle, J.A. 2010. Hierarchical modeling and estimation of abundance in
metapopulation designs. Journal of Animal Ecology, 79, 453–461.

Kéry, M. & Royle, J.A. 2016. Applied hierarchical modeling in ecology—Modeling distribution,
abundance and species richness using R and BUGS. Volume 1: Prelude and Static Models.
Elsevier / Academic Press.

Kéry, M. & Royle, J.A. 2021. Applied hierarchical modeling in ecology—Modeling distribution,
abundance and species richness using R and BUGS. Volume 2: Dynamic and Advanced
Models. Elsevier / Academic Press.

Kéry, M. & Schmidt, B.R. 2008. Imperfect detection and its consequences for monitoring for
conservation. Community Ecology, 9, 207–216.

Kéry, M., Royle, J.A., Plattner, M. & Dorazio, R.M. 2009. Species richness and occupancy
estimation in communities subject to temporary emigration. Ecology, 90, 1279–1290.

Knape, J., Arlt, D., Barraquand, F., Berg, A., Chevalier, M., Pärt, T., Ruete, A., Żmihorski, M. 2018.
Sensitivity of binomial N-mixture models to overdispersion: The importance of assessing
model fit. Methods in Ecology and Evolution, 9, 2102–2114.

Knaus, P., Antoniazza, S., Wechsler, S., Guélat, J., Kéry, M., Strebel, N. & Sattler, T. 2018.
Brutvogelatlas 2013–2016. Bestandsentwicklung der Brutvögel der Schweiz und des

57

Fürstentums Liechtensteins (Swiss Breeding Bird Atlas 2013–2016). Schweizerische
Vogelwarte, Sempach.

Krebs, C.J. 2009. Ecology: The experimental analysis of distribution and abundance. 6 Ed. Benjamin
Cummings, San Francisco.

Link, W.A. & Sauer, J.R. 2002. A hierarchical analysis of population change with application to
Cerulean warblers. Ecology, 83, 2832–2840.

Link, W.A., Schofield, M.R., Barker, R.J., & Sauer, J.R. 2018. On the robustness of N-mixture
models. Ecology, 99, 1547–1551.

MacKenzie, D.I., Nichols, J.D., Royle, J.A., Pollock, K.H., Hines, J.E. & Bailey, L.L. 2017. Occupancy
estimation and modeling: inferring patterns and dynamics of species occurrence. Second
Edition. Elsevier, San Diego.

Madsen, L. & Royle, J.A. 2023. A review of N-mixture models. WIREs Computational Statistics, 15,
e1625.

Ponisio, L.C., de Valpine, P., Michaud, N., & Turek, D. 2020. One size does not fit all: Customizing
MCMC methods for hierarchical models using NIMBLE. Ecology & Evolution, 10, 2385–2416.

Powell, L. A. 2007. Approximating variance of demographic parameters using the delta method: a
reference for avian biologists. Condor, 109, 949–954.

Royle, J.A. 2004a. N-mixture models for estimating population size from spatially replicated
counts. Biometrics, 60, 108–115.

Royle, J.A. 2004b. Generalized estimators of avian abundance from count survey data. Animal
Biodiversity and Conservation, 27.1, 375–386.

Royle, J.A. & Dorazio, R.M. 2006. Hierarchical models of animal abundance and occurrence.
Journal of Agricultural, Biological and Environmental Statistics, 11, 249–263.

Royle, J.A. & Dorazio, R.M. 2008. Hierarchical modeling and inference in ecology. The analysis of
data from populations, metapopulations and communities. Academic Press, New York.

Royle, J.A. & Young, K.G. 2008. A hierarchical model for spatial capture-recapture data. Ecology,
89, 2281–2289.

Royle, J.A., Dawson, D.K. & Bates, S. 2004. Modeling abundance effects in distance sampling.
Ecology, 85, 1591–1597.

Royle, J.A., Nichols, J.D. & Kéry, M. 2005. Modelling occurrence and abundance of species when
detection is imperfect. Oikos, 110, 353–359.

Royle, J.A., Chandler, R.B., Sollmann, R. & Gardner, B. 2014. Spatial Capture-Recapture. Academic
Press.

Schmid, H., Zbinden, N. & Keller, V. 2004. Überwachung der Bestandsentwicklung häufiger
Brutvögel in der Schweiz (Surveillance monitoring of common breeding birds in Switzerland).
Report, Schweizerische Vogelwarte, Sempach.

Strebel, N., R. Dröschmeister, H. Schmid, I. Stützle, S. Trautmann & J. Wahl. 2020. Comparing
territory-based and individual-based population trend estimates in the monitoring of
common breeding birds. Vogelwelt, 140, 183–206.

Strebel, N., Fiss, C.J., Kellner, K.F., Larkin, J.L., Kéry, M. & Cohen, J. 2021. Estimating abundance
based on time-to-detection data. Methods in Ecology and Evolution, 12, 909–920.

Vehtari, A., Gelman, A., Gabry, J. 2017. Practical Bayesian model evaluation using leave-one-out
cross-validation and WAIC. Statistics and Computation, 27, 1413–1432.

ver Hoef, J.M. & Jansen, J.K. 2007. Space-time zero-inflated count models of harbour seals.
Environmetrics, 18, 697–712.

Wenger, S.J. & Freeman, M.C. 2008. Estimating species occurrence, abundance, and detection
probability using zero-inflated distributions. Ecology, 89, 2953–2959.

White, G.C. & Burnham, K.P. 1999. Program MARK: survival estimation from populations of
marked animals. Bird Study, 46, 120–139.

58

Williams, B.K., Nichols, J.D. & Conroy, M.J. 2002. Analysis and management of animal populations.
Academic Press, San Diego.

Wyatt, R.J., 2002. Estimating riverine fish population size from single-and multiple-pass removal
sampling using a hierarchical model. Canadian Journal of Fisheries and Aquatic Sciences, 59,
695–706.

Yamaura, Y., Royle, J.A., Shimada, N., Asanuma, S., Sato, T., Taki, H. & Makino, S. 2012.
Biodiversity of man-made open habitats in an underused country: a class of multispecies
abundance models for count data. Biodiversity and Conservation, 21, 1365–1380.

Yackulic, C.B., Dodrill, M., Dzul, M., Sanderlin, J.S., Reid, J.A., 2020. A need for speed in Bayesian
population models: a practical guide to marginalizing and recovering discrete latent states.
Ecological Applications, 30, e02112.

Zipkin, E.F., Thorson, J.T., See, K., Lynch, H.J., Grant, E.H.C., Kanno, Y., Chandler, R.B., Letcher, B.H.
& Royle, J.A. 2014. Modeling structured population dynamics using data from unmarked
individuals. Ecology, 95, 22–29.

